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A B S T R A C T

We present a simulation tool that utilizes advanced modeling techniques to quantify the customer-relevant 
features of different battery electric vehicles (BEV) concepts. By incorporating comprehensive longitudinal 
and lateral dynamics analyses, the tool provides an in-depth understanding of passenger vehicle concepts in 
various driving conditions. Furthermore, the tool emphasizes evaluating comfort, presenting a holistic view 
concluding into the overall driving experience. Metrics considering the vehicle’s packaging are employed to 
assess the comfort aspects of the concepts. Implementing this simulation tool achieves a more systematic and 
reliable approach to evaluating BEV concepts. The application based on the parameters of 18 state-of-the-art BEV 
proved its compliance in the presented categories with the results of physical tests performed by reputable 
magazines with great experience and comprehensice test protocols. Its academic foundation ensures the utili
zation of state-of-the-art methodologies and the integration of the latest research findings in vehicle dynamics 
and comfort. This simulation tool offers automotive engineers, researchers, and industry stakeholders a valuable 
resource for objectively assessing and benchmarking the performance and comfort aspects of BEV concepts. With 
its ability to provide accurate evaluations and reasoning for weaknesses, this tool has the potential to signifi
cantly contribute to the advancement and optimization of future electric vehicle designs by assessing concepts in 
early development stages before physical prototypes are available, allowing for cost-efficient modifications.

1. Introduction

According to a study from 2018 [1], 13 % of customers reach their 
purchase decision for a new vehicle based on car reviews. Including the 
additional 13 % who base their decision on reviews of friends and 
internet forums, almost every fourth car is bought due to reviews. A 
study by Morning Consult [2] claims that 60 % of customers withdraw 
potential decisions after reading poor test results. This highlights the 
importance of car reviews. Today’s arguably most influential car re
views are provided by famous magazines like Top Gear, produced by the 
BBC, and auto motor und sport (AMS), published by Motor Presse Stuttgart 
GmbH & Co.KG.

Although most tests provide a wide range of customer-relevant fea
tures essential for potential purchase decisions, expensive vehicles tend 
to score superior in the final evaluation. We believe a significant aspect 
of optimizing car reviews is considering the recommended retail price 
(UVP). In Fig. 1, each blue point represents a BEV’s individual 

evaluation score of the BEV specific test procedures from AMS, the so- 
called E-Auto Supertest over its UVP. The overall results strongly 
depend on the vehicles’ price, with the two most expensive vehicles 
being rated best, whereas the cheapest is rated worst. It is also shown 
that most vehicles in similar price categories reach similar results. 
However, our study aims to reach a vehicle ratingindependent of their 
UVP but instead focuses on the variances from the shown linear trend 
line (orange). It appears that these variances are more interesting when 
evaluating the engineering quality, as shown in a superior vehicle (green 
arrow) and a inferior vehicle (red arrow) which is not yet elaborated in 
car reviews.

In addition to the presented UVP dependency, the results in specific 
procedures are compared to their contenders, which results in vehicles 
with a later start of production (SOP) being evaluated more competi
tively than earlier concepts. This also highlights the importance of in
dividual vehicle evaluation. Comparing a vehicle’s test results to 
potential results, which can be reached with the given vehicle concept, 
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more unbiased evaluations are reached. These evaluations emphasize 
the engineering quality against state-of-the-art BEV concepts.

Literature research yields information for BEV data on component 
and for basic evaluations also on vehicle level: On component level, 
Moment et al. [4] observed the efficiency map of the electric machine of 
a Chevrolet Bolt. Sarlioglu et al. [5] extend the analysis of the electric 
machine by including power electronics and batteries. Unfortunately, 
these observations are not transferred to effects on vehicle level. Kova
chev et al. [6] investigated the powertrain on vehicle level by compre
hensively analyzing the battery pack regarding safety, but no 
performance tests were performed.

Oh et al. [7] provided the most comprehensive data, in which 383 
vehicles (including 27 BEVs) were tested. The advanced vehicle testing 
and evaluation study (AVTE) [8], a collaborative effort of different 
American institutions (led by the National Energy Technology Labora
tory (NETL)), investigated the performance of 30 vehicles on both 
component and vehicle level. The data for this study has been gathered 
between 2011 and 2018. Grunditz et al. [9] presents a comprehensive 
performance analysis including energy consumption, range, accelera
tion time, and top speed based on 40 BEV. Wassiliadis et al. [10] offer 
comprehensive component and vehicle data of a current mass-series 
electric vehicle (Volkswagen ID.3 Performance from 2020), which fo
cuses on costumer-relevant features such as range, efficiency, and life
time. Our research group continued this work and analyzed the Tesla 
Model 3 SR+ from 2020, focusing especially on vehicle level [11]. All 
the studies highlight the effort of conducting data on a physical level 
with actual test vehicles to provide such analysis.

Evaluation based on simulation models is often referred to as so- 
called digital twins. The importance of applying simulation models to 
the development process in the automotive industry is described by 
Piromalis et al. [12]. They reach for quicker results and optimize the 
component design in many aspects of its development process. Further 
studies [13–15] present the application fields of digital twins mainly in 
component design, monitoring and estimation of the operation status, 
and error detection. The overall vehicle concept analysis and evaluation, 
especially compared to current state-of-the-art competitors, is yet to be 
established. Our aim is to base our analysis on simulation results of 
vehicle models so that results can be provided shortly after releasing 
new BEVs or even before physical prototypes are available.

1.1. Contributions

This study presents an approach to objectively evaluating current 
electric vehicle concepts independent of their UVP. This study is based 
on the work of Nicoletti [16], who provided a tool for designing electric 
vehicle concepts, translating performance requirements as inputs into 
electric powertrain architectures. In this study, we present a tool that 
works vice versa, obtaining performance characteristics as outputs. This 
tool is supposed to highlight the engineering quality by evaluating BEV 
concepts against themselves and not against each other. The real vehi
cles are evaluated in developer-relevant features specifically and 

restricted to BEV-relevant features regarding performance and comfort. 
Determining possible optimization potentials in different categories, the 
vehicles are in a second step compared against each other. Finally, these 
results will be compiled as an Engineering score. The objectives of this 
article can be summarized as follows:

• Conceptual delimitation of a digital twin and our reference model 
determined through different levels of parameters.

• Design of a battery electric vehicle architecture determining the 
vehicle’s potential packaging based on the official dimensional 
chains and the design of powertrain components.

• Implementation of a longitudinal dynamics model identifying po
tential performance characteristics regarding acceleration time and 
energy consumption applying official test cycles.

• Implementation of a lateral dynamics system guaranteeing a holistic 
evaluation considering lateral performance characteristics poten
tially affecting longitudinal performance results.

• Elaboration of the objective and cost-independent evaluation scheme 
and finally presenting the results of state-of-the-art electric vehicle 
concepts.

• Open access to a simulation tool, which will be published alongside 
this article, available via FTMGithub, allowing manufacturers to 
include their own vehicle concepts into our tool and evaluate their 
concepts against the current BEV.

1.2. Layout

This article is structured as follows: Starting with explaining the 
overall concept, the design or modification of the simulation tool is 
described in Section 2. Inputs are categorized, and we will show how 
unknown data is not recorded but bypassed. After the overall concept, 
the single implemented modules that later evaluate the vehicles are 
presented as comfort criteria through the packaging analysis in Section 
3, and the performance criteria in Section 4. Before we present our re
sults, we demonstrate our evaluation scheme in Section 5. Finally, we 
validate our model by discussing the results that we achieved. Lastly, 
Section 6 concludes the Benchmarking of BEV concepts based on 
simulations.

2. Digital reference model development

The benchmarking tool consists of a simulation model that creates a 
digital reference model of an existing BEV considering both volumetry 
and gravimetry of the installed components and estimates its resulting 
dynamics. The design of the reference model is followed by an evalua
tion scheme for comparing the real vehicle’s characteristics with the 
simulated ones of the reference model. Fig. 2 illustrates the bench
marking tool’s process, including the initialization and simulation of the 
reference model and the final evaluation with the real vehicle data. The 
overall concept is briefly discussed in this section, with a more detailed 
look at the simulation and the evaluation in the respective sections, as 
indicated by the orange numbers in the upper right corner of the pre
sented boxes.

To set up the reference model, we considered the same simulation 
approach as Nicoletti [16] by using only a limited set of input parame
ters. Real vehicle parameters define the basic structure of the reference 
model to guarantee comparability between the real vehicle and the 
reference model. Unknown parameters are computed as average or 
regression-based values using a database containing a wide variety of 
more than 2000 vehicles. Various manufacturers, vehicle classes and 
body shapes, technical implementations of the drive train, and prices are 
included in this database. Therefore, our reference model does not 
correspond to a digital twin. Instead, with the average parameters, the 
reference model represents a mean vehicle based on the current 
state-of-the-art of the automotive industry. This state-of-the-art is 
defined by the parameters derived from the database. Freely selectable 

Fig. 1. Current results of the AMS E-Auto Supertest with the blue points rep
resenting the test vehicles and the orange trendline the dependency on the 
UVP [3].
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parameters allow defining certain inputs like the machine efficiency 
map, the driving cycle, and the charging curve as individual 
state-of-the-art. A brief overview of the architecture of the reference 
model and the setup of required real input parameters, statistically 
derived parameters, and freely selectable ones is presented in Sections 
2.1 and 2.2.

After the initialization of the reference model, its packaging is esti
mated. This design process begins with the simulation of the interior of 
the vehicle. Dimensions inside the passenger cabin are calculated using 
official standards provided by the Society of Automotive Engineers 
(SAE). Secondly, volumetric simulations of the electric machine(s), the 
gearbox, and the high-voltage battery are executed. Lastly, the vehicle 
concept design is completed by calculating the reference mass and 
applying the methods and rules developed by Nicoletti et al. [16,17].

Based on the volumetric and gravimetric design of the reference 
model, its dynamics are simulated. The longitudinal simulation con
siders the acceleration, energy consumption, and electric range ac
cording to a selected driving cycle. The lateral dynamics are taken into 
account by analyzing the 18m slalom maneuver. The dynamic simulation 
concludes with the estimation of the charging time.

Finally, the simulated characteristics of the reference model and the 
ones of the real vehicle are evaluated. Hence, the percentage deviation 
between simulation and reality in multiple customer-relevant criteria is 
transformed into an individual point score. This individual point score 
enables the evaluation of the design of the components and dynamics of 
the real vehicle. The weighted summary of the individual point scores 
leads to the final Engineering score for each vehicle.

2.1. Vehicle architecture

The vehicle architecture of the reference model requires four 
different features described by Nicoletti et al. [18] containing the 
dimensional concept, dimensional chains, powertrain topology, and 
component modeling.

2.1.1. Dimensional concept
The dimensional concept defines the vehicle dimensions and de

termines the geometrical constraints of the vehicle package [16,18]. The 
dimensional concept is based on the SAE standards. The most important 
dimensions are described in the SAE J1100 [19], which are classified 
into length (L), height (H), and width (W). A reference coordinate sys
tem enables the definition of the exact components’ position. This co
ordinate system is placed according to the ISO 4130 standard in the 
center of the front axle, with the X-dimension increasing towards the 
longitudinal end of the vehicle and the Z-dimension along the vehicle’s 
height [20]. The dimensional concept consists of three 
sub-characteristics, all shown in Fig. 3, including the reference coordi
nate system.

The exterior concept contains the external dimensions of the vehicle. 
The interior concept refers to the required space of the driver and pas
sengers [21]. Therefore, conceptional human dimensions are defined 
with a two-dimensional manikin [22]. Reference points are necessary to 
position the manikin adequately inside the passenger cabin. The Seating 
Reference Point (SgRP) ① indicates the position of the hip. The heel 
position of the driver and the passengers in the second seat row is 
defined as Acceleration Heel Point (AHP) ② and Floor Reference Point 
(FRP) ③, respectively [19]. Finally, the sight and trunk concept deals 
with the driver’s field of vision and the available space to store luggage 
[16].

2.1.2. Dimensional chains
Dimensional chains are defined as a succession of elements in which 

the next item directly follows the previous one [23]. Felgenhauer et al. 
[24] specify the dimensional chain as the sum of the components’ 
lengths and their distances along a respective coordinate direction. 
Dimensional chains are used to identify the available space and the 
necessary dimensions of various components like the battery installation 
space [25]. For example, Fig. 3 shows the entire vehicle length as the 
sum of the wheelbase L101 and the front and rear overhang L104 and 
L105.

2.1.3. Drive topology
The topology combines the general decision for a certain powertrain 

concept with its components’ design and geometrical positioning [16, 
26]. The powertrain consists of the traction battery, the power elec
tronics, the electric machine, the gearbox, and the charger [27]. This 
scope will distinguish between battery, electric machine, and trans
mission topology.

The battery topology comprises the integration principle and its 
shape [27]. The integration principle defines the battery’s position in 
the underfloor and its effects on the dimensional concept [16]. Both 
SgRP-1 and SgRP-2 are necessary to differentiate between the integra
tion principles. For a highfloor principle, the battery is positioned be
tween the vehicle ground and the interior compartment. Therefore, it 
affects the position of the seating reference points, which must be shifted 
upwards [27]. In a lowfloor vehicle, the battery does not affect the 
seating reference points because the battery is placed in the tunnel and 
underneath the seats [16]. Additionally, in mixedfloor vehicles, not all 
seating reference points are affected by the battery, making this 

Fig. 2. Overall concept of the presented methodology with reference to their 
respective sections.
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Fig. 3. The three features of the dimensional concept.
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principle a hybrid between high- and lowfloor vehicles [27]. Regarding 
the battery shape, four different basic shapes are described. While the 
rectangular and drop-shape form is mostly used in highfloor vehicles, 
lowfloor vehicles use a cross- or T-formed shaped battery [27].

Electric machines provide the necessary torque for the motion of the 
BEV. Since most BEV use a central machine topology, only this is 
implemented in the tool. The central machine propels an entire axle with 
additional components such as the gearbox, differential, and driveshafts 
[28]. Central machines can be classified by the relative position of the 
axis, in front, behind, or coaxial to the corresponding axle [29].

Since we only consider central machines, a gearbox adapts the high 
engine speed to the lower speed of the wheels [30]. BEV mostly use 
single-speed, two-staged gearboxes due to their efficiency, simplicity, 
and cost savings [16,31]. Gearboxes can be subdivided into parallel or 
coaxial gearboxes based on the alignment of the input and output shafts. 
For our reference model, the design of the simulated gearbox follows an 
approach introduced by Nicoletti et al. [29].

2.1.4. Component models
A component model is used to evaluate the volume and mass of a 

certain component [16]. In the presented tool, mostly semi-physical and 
empirical models are used. Empirical models use statistical methods 
based on measured data, whereas semi-physical models combine those 
statistical methods with physical correlations [16]. An example of such a 
semi-physical approach is the volumetric simulation of the electric 
machine presented in Section 3.2: The scaling of the machine is based on 
physical law, while the housing thickness is determined using empirical 
factors. Various input data are required to create those empirical factors, 
either based on the manufacturer‘s data or databases and standards. An 
overview of all used empirical models is given in Section 2.2.2.

2.2. Parameters of the reference model

To calculate the digital reference model of a specific vehicle, various 
input parameters are required. The input parameters can be subdivided 
into three different types. Firstly, real data values of the BEV to be 
digitally mapped are required. Accordingly, these are different for all 
vehicles under investigation. Secondly, there are parameters derived 
from empirical models. Thirdly, some parameters can be freely chosen 
by the user. The last two types of parameters allow the calculation of the 
reference model based on the state-of-the-art instead of a digital twin. In 
contrast to the real vehicle inputs, those parameters follow the same 
calculation rule for each simulated vehicle.

2.2.1. Parameters of the real vehicle
Real vehicle parameters define the frame of the reference model. 

This ensures that the reference model is a simulative representation of 
the real vehicle. Some of these parameters can be found in publicly 
accessible online databases like the ones of the Allgemeiner Deutscher 
Automobilclub (ADAC) or the ev-database [32,33]. A deeper insight into 
the vehicle’s inner structure is required for other parameters. Those can 
be determined using three-dimensional vehicle models, for example, 
provided by A2Mac1 [34].

The starting point for designing the reference model are the external 
dimensions of the real vehicle. Its height H100, width W103, and 
wheelbase L101, define the boundaries of the available space. Addi
tionally, the vehicle’s frame form influences the mass of the vehicle. The 
turning circle and possibly integrated rear-axle steering affect the 
wheelhouses and, therefore, the installation space for the battery. 
Finally, the real ground clearance is necessary for the design of the 
passenger cabin.

Additionally, several interior dimensions are required for the simu
lation. As there is a wide variation in the real implementation of the 
seating height H30-1 [35], this dimension is taken from the real vehicle. 
Since the dimensions at the rear seat cannot be estimated properly by a 
manikin, the seat height H30-2 and the headroom H61-2 are taken from 

the real vehicle. To calculate the trunk volume, three inputs of the real 
vehicle are necessary: H252 describes the vertical distance between the 
ground and the lowest point of the trunk, H297-2 depicts the trunk’s 
height, and finally, the outline of the trunk volume.

Real vehicle information is also required to map the electric machine 
and gearbox topology. This includes the number of electrical machines 
and the driven axle(s). Options for the machine types include Induction 
Machine (IM), Permanent Magnet Synchronous Machine (PMSM), and 
Separately excited Synchronous Machine (SSM). For designing the 
electric machine(s) we use a scaling approach. The maximum torque and 
power are preconditions for the scaling. The real gear ratio is required to 
estimate the size of the gears, shafts, and bearings.

To simulate the battery, information about the cells, the available 
installation space, the position within the vehicle and information about 
the electronic configuration is needed. Cell information includes the cell 
type (pouch, cylindrical, prismatic as the current state of the art [36]) 
and its height. Secondly, the integration principle and the different areas 
filled with battery cells (Fig. 4) must be defined. Thirdly, the real dis
tance between the electric machine and battery or, in the case of a 
non-driven axle, the distance between axle and battery for both axles is 
required. Furthermore, the relative position of the battery to the rear 
tires is needed to calculate the battery width Wbatt (Fig. 5). Lastly, the 
electronic configuration of the simulated battery is defined by using the 
real pack configuration of serial and parallel cells.

Computing the battery’s length requires the dimensions of the 
wheelhouses. For this purpose, we use the real tire dimensions for both 
axles according to the ISO metric codes containing the tire width and the 
diameter of the tire and rim. The front steering angle can be calculated 
based on the tire dimensions, the turning radius, and the rear steering 
angle. Subsequently, the wheelhouse dimensions are computed 
following the approach of Nicoletti et al. [37]. Additionally, the ISO 
metric codes of the tires used by AMS for their lateral dynamics testing 
are required to guarantee the same baseline for the simulation and the 
real testing.

The charging time estimation mostly depends on the maximum and 
average charging power. The real capacity is required to conduct an 
independent charging time simulation instead of the simulated one. In 
addition, the cathode material is a relevant input. Considered are only 
Lithium Iron Phosphate (LFP), Lithium Nickel Cobalt Aluminum Oxide 
(NCA), and Lithium Nickel Manganese Cobalt Oxide (NMC) cathode 
materials since these are the most widespread in vehicle batteries [38].

Lastly, the real vehicle’s mass is required. Although a gravimetric 
simulation is conducted, some components, like the shock absorber or 
the brakes, are designed with the real vehicle mass to better represent 
the real components. Additionally, for executing the gravimetric simu
lation the mass distribution and the material of exterior components like 
the door and hood (steel or aluminum) are required.

To conduct the benchmark analysis the comparative values from the 
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Fig. 4. Considered battery areas for highfloor (top) and lowfloor vehi
cles (bottom).
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real vehicles are also stored in the same table. Section 5.1 gives a 
detailed explanation of those values.

2.2.2. Parameters through empirical models
Since only a few real vehicle parameters are used to create the 

reference, many other parameters must be estimated with statistical 
models. Data sets of different vehicles are required to use the statistical 
methods. Those data sets are stored in a database like the one presented 
in [18]. All non-predefined but necessary vehicle parameters can be 
calculated using this database. Adding new vehicles into the database 
varies the results of the statistical methods and therefore prevents the 
database from data-aging [16]. A differentiation is made between three 
different types of obtaining certain parameters from the database.

Firstly, fixed parameters are defined once and do not change by 
adding new vehicles to the database. These parameters are either pre
defined by standards or cannot be explicitly determined for a certain 
vehicle. For instance, the manikin’s thigh length used for the dimen
sional concept is defined in the SAE J826 [39] or the efficiencies of the 
gearbox origin from various publications (Table 1).

Secondly, unknown parameters can be determined using data from 
several databases. If these do not correlate with other parameters stored 
in the database, they are used as constant average values. The mean 
parameters are calculated using statistical processing like the 
Kolmogorov-Smirnov test and subsequent elimination of statistically 
irrelevant parameters.

Thirdly, a linear regression determines the simulated parameter if 
there is a dependency between the parameter and other characteristic 
values. A linear regression describes a linear dependency between in
dependent input variables and the dependent output variable of a sys
tem. To statistically validate the linear regression model, the F- and t-test 
are conducted [40,41].

2.2.3. Freely definable parameters
Three other necessary design variables can be specified by the user. 

These include the driving cycle, the characteristics of the electric ma
chine, and the charging curve.

For simulating a BEV’s energy consumption, the standardized 
Worldwide harmonized Light vehicles Test Procedure (WLTP) cycle [42]
is considered since this is the current standard for the determination of 
consumption in the European Union. Additionally, for estimating the 
vehicle’s range, the ADAC-Ecotest [43] is used. The Ecotest consists of a 
complete WLTP cycle and an additional highway cycle. On the one hand, 
using the Ecotest avoids the repeated usage of the same cycle for two 
evaluation criteria. Since the presented tool calculates the range based 
on the division of capacity and energy consumption, the Ecotest offers 
good comparability due to the same calculation. On the other hand, the 
Ecotest provides comparative values determined by an independent 
organization during their BEV-tests.

The characteristic of an electric machine consists of the torque over 
speed curve and the efficiency map. The efficiency map assigns an ef
ficiency to each operating point of the electric machine consisting of the 
torque and the corresponding speed [44]. Three different machine 
characteristics are provided one for each of the aforementioned types of 
electric machines [45].

In the context of the tool, a charging curve is defined as the charging 
power over the battery’s actual state of charge (SOC). For fast charging, 
we only consider the area between 10 % and 80 % SOC as also 

contemplated by the P3 Charging Index [46] or the ev-database analysis 
[33]. Since the charging curve differs for various models, we introduced 
four generic charging curves representing various charging behaviors to 
fulfill the tool’s overall objective of developing a non-vehicle-specific 
simulation approach. These generic curves represents a standardized 
relation between charging power and SOC and is afterward scaled up to 
the maximum charging power of the real vehicle.

3. Electric vehicle concept design

At the beginning of the vehicle design process, the challenges of 
installation space and its utilization, the packaging, get a particularly 
intriguing aspect. Since the simulation model designs a vehicle from 
scratch, we present the procedure for battery modeling, drivetrain 
sizing, and interior design based on the previously presented dimen
sional chains in this section.

3.1. Determination of the battery installation space

The battery is the largest component in BEV, so it is dimensioned 
first. Based on the integration principle, the battery consists of various 
individual regions. These are visualized in Fig. 4 considering all possible 
areas for highfloor vehicles on the top and lowfloor vehicles on the 
bottom. The horizontal, lateral and vertical dimensions of the battery 
are shown.

In highfloor vehicles, the battery is implemented as a cuboid and fills 
the area between vehicle ground and interior. In the following, this area 
is called the underbody. Additionally, cells can be placed on top of the 
underbody, filling the vehicle tunnel and the area underneath the second 
seat row. The Polestar 2 is an example of such an implementation [47]. 
On the contrary, lowfloor vehicles do not use the whole underbody to 
store battery cells. Instead, the volume of the underbody is reduced and 
describes only the area underneath the second seat row. Like highfloor 
vehicles, a second pack of cells can be positioned atop the underbody. In 
this study, the area is assumed to cover the entire Wbatt . Finally, the 
tunnel offers additional space for further cells. However, in lowfloor 
vehicles, the tunnel is placed at the same height as the underbody while, 
in highfloor vehicles, it is placed on top of the underbody.

3.1.1. Dimensioning the vertical space of the battery
The approach determining the battery parameters in vertical and 

horizontal directions is based on [27]. Modeling the battery height, only 
one cell is assumed to be installed in the vertical direction. The height is 
significantly influenced by the height of a cell, which is specified as a 
direct input parameter. An average value is added considering the 
module height and the distance between the module and the housing. 
Furthermore, the battery housing is considered by using average pa
rameters for the thickness of the base, the lid of the housing, and the 
cooling structure.

3.1.2. Dimensioning the horizontal space of the battery
In the horizontal direction, the battery installation space is restricted 

by the front and rear axle units containing chassis components and 
motor-gearbox units. In addition, the wheel arches on all four tires show 
a considerable restriction. For each installed drive unit, the arrangement 
of it in comparison to the axle is examined (Section 2.1.3). The battery 
length Lbatt is determined with the shortest available distance, and the 
real safety distance between the battery and the drive unit is added. 
Additionally, it is checked whether the wheel arch influences the 
installation space in the horizontal direction of the battery. It is defined 
by the tire width, the steering angle, and an average wheel arch width. 
Therefore, the battery is placed within these limits. An exception is a 
variant in which battery space between the wheel arches is planned from 
the start [16], where additional installation space for the battery is 
created in the horizontal direction.

Wbatt Wbatt Wbatt

Rear axle Rear axle Rear axle

Fig. 5. Sizing of the battery pack in lateral direction.
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3.1.3. Dimensioning the lateral space of the battery
Wbatt is modeled with a correction factor considering the relative 

position of the real vehicle battery. Depending on the manufacturer’s 
implementation, the width is either smaller than the distance between 
the tires on the rear axle, as wide as the inside of the tire, or larger than 
this dimension (Fig. 5). Depending on the variant, Wbatt of the reference 
model can be calculated with a defined factor, which reflects a relation 
between vehicle width and Wbatt . The factor is determined for each 
category based on the existing data in the database and averaged. Be
sides the three methods presented, an additional factor for conversion 
design vehicles is modeled, as the previous categorization did not show a 
correlation for this design approach.

3.1.4. Defining the final battery installation space
Given Lbatt and Wbatt, the individual dimensions for the installation 

space are computed. The rectangular underbody of highfloor vehicles is 
defined by Lbatt and Wbatt . For the length of the underbody of lowfloor 
vehicles, the approach stated in [16] is used. The length depends on the 
position of the SgRP-2 and the empirically calculated seat length. If the 
second level is filled, this method can be applied similarly to all inte
gration principles. A similar concept is used for the area below the front 
seats. The position of the SgRP-1 and an empirically derived front seat 
length define the length of this area. To dimension the tunnel, the 
approach described in [16] considers the lateral position of the SgRP-1 
and the empirically derived seat width. The presented method enables 
us to simulate the battery dimensions of lowfloor vehicles such as the 
Opel Mokka e with the same accuracy as highfloor vehicles.

3.1.5. Filling the installation space with cells
To provide sufficient energy for the operation of a BEV, the instal

lation space, considering all available areas, must be filled with cells. In 
our approach, the real pack configuration, consisting of parallel and 
serial cells, is used as an input. Thus, the reference model features the 
same number of cells and battery voltage as the real vehicle. Further 
core parameters are the cell dimensions length, width, and height. Since 
the height is taken as an input parameter, the filling process is conducted 
in a two-dimensional space. Averaged package factors increase the cell 
dimensions in both directions, considering additional components like 
cable and cooling systems [16]. The filling process aims to maximize the 
cell dimensions while ensuring the given pack configuration.

The iterative process fills each possible area with an integer number 
of cells. Since there is a geometric dependency between the length and 
width of cylindrical cells, only one degree of freedom exists. Therefore, 
the maximal diameter of these cells is estimated. Due to an additional 
degree of freedom for pouch and prismatic cells, further input is 
required. We specify an interval for the cell’s width using the minimal 
and maximal width from all cells in the database as boundaries. For 
pouch and prismatic cells, the combination of length and width is esti
mated. The iteration terminates as soon as the maximum cell dimensions 
are found.

Based on the cell dimensions, the calculation of the battery’s ca
pacity is possible. It includes the determination of the cell volume 
considering only the active cell material. Subsequently, the gross battery 
capacity is the product of the individual cell volume, the volumetric 
energy density, and the total number of cells. The average energy den
sity is calculated for each cell type. To increase the longevity of the 
battery, the gross capacity in BEV is not fully used to provide the driving 
power [9]. Therefore, an empirically derived mean factor estimates the 
usable net energy based on the gross capacity.

3.2. Determination of the electric machine and gearbox

For the volumetric design of the electric machine, a scaling approach 
is implemented. The aim is to geometrically modify a known reference 
machine so that it coincides with one of the characteristic data of the 
real installed machine [48].

The scaling approach was presented by Pries and Hofmann [49] and 
fulfills the electromagnetic and thermal dynamics. To align the torque of 
the scaled, simulated machine exactly to the torque of the real machine 
Treal, a scaling factor λ is calculated using Equation 1. 

λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Treal

Treference

3

√

(1) 

This scaling factor is then applied to calculate the rotational speed 
and the resulting scaled power. Since the scaling factor does not influ
ence the efficiency map, the scaled map corresponds to the one of the 
reference machine. Hence, the efficiencies do not change, only the 
corresponding operating points shift due to the scaling factor. To take 
the geometric differences of the scaled machine into account, the scaling 
factor is multiplied by the diameter of the reference machine, which 
yields a scaled diameter. Based on the scaled diameter, the length and 
volume of the electric machine can be estimated using the approach 
described in [16].

In addition to the electric machine, the transmission is also modeled 
concerning the installation space and components. The method is 
adopted from [29] and designs a single-speed gearbox based on the 
required properties, whereby the executed gearbox design is adopted 
from the real vehicle.

3.3. Determination of interior dimensions

The interior concept is developed following the sizing of the battery 
and drive unit. In addition to the front and rear seating rows, the vehicle 
design includes the trunk as another important comfort feature.

3.3.1. Sizing the vertical interior space
The modeling of the available interior space in the vertical direction 

is based on the methods of Nicoletti et al. [50]. Still, some adjustments 
are made to enable benchmark studies. H100 is crucial for the interior. 
With H100, the battery height, the real ground clearance H156, and the 
battery integration principle, the interior height is determined according 
to Fig. 6. The roof thickness is determined using an average parameter 
while considering an optional glass roof. The dimensions H30-1, H5-1 
and H61-1, the latter being angled 8 degrees following the SAE J1100 
[19], are determined using predefined dimensions of a 95th percentile 
manikin according to the SAE J1052 [51] and the reference points ①, ② 
and ③. The procedure results in specific dimensions for the front seats, 
which can be compared and evaluated with the real vehicle’s.

As manufacturers rely on different solutions for designing the rear 
row of seats [35], the H61-2 dimension is given by the real vehicle. 
Hence, the position of the SgRP-2 can be computed considering the roof 
thickness and an offset caused by the lower position of the roof at the 
second seat row [16]. To include the headroom of the second row in the 
benchmark analysis without real vehicle values, a further 95th percen
tile manikin and a similar dimensional chain to the front row (H100, 
H30-2, thickness of roof) is used based on [50].

Determining H252, a distinction is made whether a drive unit is 
installed at the rear axle. For vehicles with a drive unit at the rear of the 
vehicle, its vertical height is determined and combined with an empir
ical value considering the distance between trunk and drive unit. 

2

1 1

3

H156

t

t

H61-1

H30-2

H5-2

H100

H

HH
AHP2roof

batt

batt2comp

roof
AHP2head

X

Z

Fig. 6. Available vertical space in the interior.

N. Rosenberger et al.                                                                                                                                                                                                                           e-Prime - Advances in Electrical Engineering, Electronics and Energy 9 (2024) 100746 

6 



Otherwise, the real H252 is used. The height of the trunk corresponds to 
the height of the rear seat [19]. Since this height is not modeled, the 
shoulder height of the manikin in the second row is used as the reference 
point. When modeling the side surface of the trunk, a simple 
prismatic-shaped area does not adequately reflect reality. Therefore, the 
vertical contour of the trunk is determined using the profile of the real 
vehicle, and the volume is adjusted accordingly (Fig. 7).

3.3.2. Sizing the horizontal interior space
For the horizontal simulation of the interior space, a separate method 

is implemented for the front and rear seats, following [18]. For the di
mensions of the front passengers, the length measure L53-1 is deter
mined using the on the SgRP-1 placed 95th percentile manikin and the 
real H30-1 (Fig. 8). With L113, this results in the total horizontal space 
for the front passengers, L99-1.

The measurement of the distance from the rear axle to the SgRP-2 
(L115-2) differs significantly depending on the body design used. 
Thus, we use a regression based on L101 and L113. Using L115-2, the 
horizontal distance between the two SgRP’s L50-2 and consequently the 
legroom L53-2 via the wheelbase and the FRP in the second seating row 
are determined.

The length of the trunk is determined between the front and rear 
points of the trunk floor. The back of the rear seat represents the front 
boundary. It can be calculated by using the SgRP-2 and adding the 
distance to the seat cushion and the thickness of the seat cushion itself. 
These parameters are mean values taken from the database. With the 
seat angled at 25∘, following the SAE J4002 [52], the intersection of the 
trunk floor and the back of the seat can be determined. The endpoint of 
the trunk is calculated using averaged parameters for the distance be
tween the trunk and the rearmost point of the vehicle as well as L105.

3.3.3. Sizing the lateral interior space
Using the method of Mau and Venhovens [53], a fixed parameter for 

each vehicle’s body design is set as the distance between the elbow of 
the manikin and the inside of the door. The interior width is resolved 
using the vehicle’s width and a fixed parameter considering the seat 
width.

The trunk width is estimated using the position of the dampers on the 
rear axle. With the determined innermost point of the damper, an 
empirical distance between the shock absorber and the trunk derived 
from the database is added. It defines the distance of the trunk to the 

center of the vehicle and calculates the entire trunk width W201 by 
doubling the result.

3.3.4. Results of the comfort criteria
One important feature of a vehicle concept is the headroom of the 

passengers in the front and rear seating rows. The relevant measures 
within the interior concept are H61-1 and H61-2.

For the front seats, the simulation provides an average deviation 
between real and simulated H61-1 of -0.77 %, where the individual re
sults for each vehicle can be seen in Fig. 9. A positive deviation indicates 
that the simulation result exceeds the real vehicle’s, while a negative 
deviation signifies the converse. Specifically, in the context of H61-1, a 
positive deviation suggests that the reference vehicle affords greater 
passenger vertical space. This assessment is adapted according to the 
criterion being analyzed.

Reasons for deviations of the headroom can be found in the entire 
dimensional chain consisting of the vehicle height, the position of the 
AHP, the H30-1 dimension, and the thickness of the roof. The position of 
the AHP, for example, depends on the battery height and the distance 
between the battery and the interior, the latter parameter varying 
depending on the manufacturer and being used as a fixed parameter. 
The H30-1 is coupled in a dimensional chain with the legroom of the 
front passengers. In the case of the Renault Zoe, this coupling results in 
larger deviations, as its seating position is comparatively upright, and 
the real H30-1 dimension is significantly higher than the ones of the 
competition [54]. As a result, the simulated H61-1 is higher than the real 
one. Therefore, the reference model of the Renault Zoe can provide 
+11 % more headroom than the real vehicle. Regarding the position of 
the AHP, relatively large deviations can be found in the vehicles with an 
EV-only platform from Volkswagen (MEB). This difference is due to 
differences in the distance between the battery and the interior [34].

The headroom of the rear seat is described with the H61-2 param
eter. On average, the results show a deviation of +6 %. Due to the 
method for the calculation of the H61-2 dimension, which uses a 95th 
percentile manikin in the rear seating row, the deviations are positive 
and the same for the majority of the analyzed vehicles. Only in a few 
cases, the vertical space for a 95th percentile manikin is limited in the 
second seating row, resulting in a negative deviation. Furthermore, 
deviations in this area can, for example, relate to the average roof 
thickness following the generalized approach. The H61-2 of the Fiat 
500e is simulated higher than the real vehicle. Due to the design, the 
manufacturer reduces the measure to achieve a tolerable seating posi
tion [55]. A different example of a negative deviation is the BMW iX. The 
simulated headroom is smaller than the real one. This deviation 

H 297-2

H 252

L209-2

Fig. 7. Side view of modeling the trunk.

L53-2

L50-2L99-1 L115-2

L53-1

L113

H30-1

X

Z

Fig. 8. Available horizontal space in the interior.
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correlates to reviews of that car, where one mentioned positive aspect of 
the vehicle is the big dimensioned headroom space in the second row 
[56].

In addition to the headroom, the legroom L50-2, which analyses the 
horizontal design, is another evaluated comfort measure. An average 
deviation of +5 % is shown in Fig. 10.

The result of the measure is influenced separately by several ele
ments. One of these parameters is the position of the SgRP-1, which 
influences the legroom significantly. One distinguishing example is the 
Hyundai Ioniq 5, which shows a large deviation in the L99-1 dimension 
following the positioning of the SgRP-1 and a bigger H30-1 compared to 
the competition [34]. Similar patterns are evident within the Jaguar 
I-Pace. On the other hand, for vehicles based on the MEB platform, such 
as the Audi Q4 e-tron, the SgRP-2 of the real vehicle is moved backward 
[34]. That measure results in more usable legroom in the rear of the 
vehicle [57].

Modeling the trunk with a combination of direct inputs, such as the 
trunk contour, and simulated parameters, such as the trunk length or 
width, shows an average deviation of +13 % across all 18 vehicles in 
Fig. 11.

One possible reason for the positive deviations is the methodology 
itself, the aim of which is to provide a generally valid approach for all 
vehicles by using the previously presented dimensions such as L209-2, 
H297-2 and W201, which are determined identically for all vehicles. 
Individual solutions in the trunk design, which lead to larger deviations, 
are therefore not taken into account. Although the method differentiates 
between different spring variants in the modeling of the trunk and thus 
enables an objective basis for comparison, individual solutions in the 
area of the chassis can also lead to deviations. The latter is evident in the 
BMW iX. The manufacturer chooses an air suspension on the rear axle, 
which is wider than comparable spring-damper elements [58,59]. In the 
simulation, this results in a smaller trunk width. The real BMW iX has the 
trunk floor placed higher up, avoiding the problem. An example where 
large differences in the individual parameters for trunk modeling result 
in a large deviation in the trunk volume is the Nio ET7. Its simulated 
trunk length exceeds the real measure, which can be explained by the 
fact that Nio is focusing on large legroom to maximize comfort in the 
second seat row, which plays an important role in a luxury sedan like the 
Nio ET7 [34].

In contrast to the positive deviations, the simulated trunk volume of 
the Tesla Model 3 is 19 % smaller than the real one. One reason for this 
difference is the combination of a comparatively small modeled trunk 
length and height in relation to other sedans’ large real trunk volume 
[60].

4. Vehicle dynamics simulation

To evaluate the driving dynamics properties of electric vehicles in 
scientific benchmarks, this study includes a simulation of the vehicle’s 
driving dynamics. As common in the state-of-the-art, this is divided into 
longitudinal and lateral dynamics. The associated methodologies are 
presented in the following sections. In addition, a vehicle-specific 
simulation of the charging time in the charging stroke from 10 to 80 % 
is included.

4.1. Longitudinal vehicle simulation

The longitudinal simulation is based on [61] with adapted functions 
and input parameters. The simulation uses the previously determined 
values for the scaled electric machine and the calculated vehicle mass. 
Based on the data, missing inputs (e. g. the moment of inertia) are 
determined. The longitudinal simulation is divided into acceleration, 
consumption, and range.

4.1.1. Acceleration simulation
The acceleration simulation determines the acceleration time from 

0 − 100 km/h. The first step determines the achievable wheel torque 
from standstill to maximum motor speed. In the second step, the ac
celeration and resulting velocity are calculated in an iterative approach. 
In each iteration, the resistance force is determined and compared to the 
propelling force of the powertrain. The iterations’ resulting acceleration 
and velocity are stored in a third step. These three steps are repeated 
with the updated velocity. During the calculation, the traction limits 
depending on vehicle parameters are considered to prevent excess of 
these limits.

4.1.2. Consumption and range simulation
The consumption simulation allows us to evaluate the efficiencies by 

determining the consumption in a desired driving cycle. The preselected 
driving cycle for the consumption calculation is the WLTP cycle. We use 
the resulting reference model as the input after all the previous steps in 
the reference model development, including the vehicle mass. As the 
modeled traction battery influences the vehicle mass, the mass differs 
from the actual vehicle. This leads to divergent consumption results 
compared to the original model.

The driving resistance at every time step of the driving cycle is 
determined in the first step. This includes air, rolling, road gradient, and 
acceleration resistance. Summed up, these build the base of the con
sumption simulation. With the relevant vehicle parameters, the required 
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Fig. 10. Deviations in L50-2 for all 18 vehicles.
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torque and wheel speed are transformed into the power at the wheels. 
We separate between front-wheel drive (FWD), rear-wheel drive (RWD), 
and all-wheel drive (AWD). In the case of one driven axle, in FWD and 
RWD, the required power of the wheels is directly converted into the 
mechanical power at the motor applying transmission gear ratios and 
efficiencies [62]. With the electric machine’s efficiency map and the 
current torque and motor speed the efficiency is determined to compute 
the electrical power required at the motor. Considering the battery and 
power electronics’ efficiencies [63], the battery’s power is calculated. 
The used battery and power electronics efficiency represent the average 
of all analysed technologies in [63]. For the transmission efficiency we 
chose the single-speed transmission, as this is the only configuration in 
our simulated vehicles. The reference efficiencies are displayed in 
Table 1. The electric machine’s efficiency is determined with three 
different individually scaled efficiency maps for the machine types 
PMSM, SSM, and IM [45].

Since the overall efficiency during braking phases is lower than 
during propulsion, a new and different approach has been developed for 
regenerative braking [64]. Based on this approach, we tested two ve
hicles from our institute. They represent state-of-the-art BEV from the 
year 2020. With several different test scenarios, including only regen
erative braking, brake blending, and acceleration, the results of both 
vehicles were transferred into a regression model. This regression uses 
the power at the wheels as input and calculates the overall efficiency for 
the time step. This enables the direct calculation of the power being 
charged back into the battery while braking based on the power at the 
wheels. Before determining the energy consumption, the auxiliaries are 
considered using a constant value determined from the aforementioned 
two state-of-the-art BEV. In the next step, the energy consumption in the 
driving cycle is computed with the battery power at every time step. The 
consumption is calculated with the cycle’s total driven distance. The last 
step includes the range calculation for the tested driving cycle.

For AWD vehicles, the most energy-efficient torque split between the 
front and rear axle is determined. For this purpose, the torque split is 
divided into 1 % steps, and the theoretically required power for every 
possible torque split is calculated. The configuration with the least 
required electrical power for each time step is chosen. This is done by 
carrying out the previously presented steps in the acceleration process 
for every torque split option. The result is the operating point with the 
lowest resulting electrical power while providing the required torque at 
the wheels. The regenerative braking process equals the one-axle-driven 
vehicle option.

In addition to the consumption calculation, we evaluate the effi
ciency of a vehicle based on its range. As already mentioned in Section 
2.2.3, we use the ADAC-Ecotest cycle instead of the WLTP cycle to 
determine the range. A further reason for the Ecotest range evaluation is 
the test procedure performed by the independent test organization 
ADAC. The Ecotest consumption is determined using the procedure 
equivalent to the WLTP consumption. We use each vehicle’s simulated 
battery capacity to estimate the vehicle’s range.

4.1.3. Results of the longitudinal simulation
The results for the acceleration time from 0 − 100 km /h, illustrated 

in Fig. 12, show an average deviation of − 7 % below the real vehicles. A 
negative deviation indicates that the simulated acceleration time is 
lower than the real acceleration time. In other words, the real vehicle 
accelerates worse than the reference vehicle, which is why a negative 
deviation is evaluated as negative in the subsequent vehicle evaluation, 

while a positive deviation is assessed as positive.
The largest positive deviation compared to the real vehicle is found 

in the vehicles XPeng P7 (+10 %) and BMW iX (+9 %). Both corre
sponding real vehicles have significantly higher electric machine powers 
and lower masses, which leads to lower acceleration times in the real 
vehicles. One possible reason is that XPeng and BMW are among the 
latest vehicles in the benchmarking environment with sales launch in 
2020/2021, so the corresponding state-of-the-art technology was 
comparatively well applied in both vehicles.

Conversely, a conservative configuration of the motor map and 
control systems can be assumed for the oldest BEV in the benchmarking: 
As a real vehicle, the Audi e-tron misses the simulation value. However, 
the real vehicle’s motor output is even higher than one of the reference 
model with a comparable mass. With a deviation of − 21 % compared to 
the real vehicle, the Audi e-tron is one of the vehicles with the greatest 
negative deviation together with the Skoda Enyaq ( − 25 %) and 
Hyundai Ioniq 5 ( − 19 %). Possible reasons for the below-average result 
of the acceleration simulation for the Audi are the comparatively early 
SOP of the vehicle and Audi’s lack of experience in designing BEVs since 
the e-tron model was the company’s first BEV.

In contrast, Skoda Enyaq and Hyundai Ioniq 5 have power-restricted 
motors in the drivetrain variants analyzed: According to the motor code, 
the Skoda has the identical electric motor in the model variant iV50 as 
the higher positioned variant iV80 (150 kW) [65]. However, only 
109 kW is available in the iV50 variant. In the Hyundai, the front and 
rear electric machines have almost identical rotor diameters [34], but 
considerably less power is available in the front electric motor. The 
design strategy of power-restricted motors was presumably chosen by 
the two manufacturers in order to be able to provide cheaper entry-level 
variants and higher-positioned and more powerful model variants with 
the same electric motor in a cost-neutral way. In the context of the ac
celeration simulation, however, this means that the electrical machines 
fall below their technical capabilities in both the Skoda and the Hyun
dai. This explains the higher power specifications in the simulation and, 
thus, the significantly shorter acceleration times compared to the real 
vehicles.

Finally, all FWD vehicles analyzed in the simulation significantly 
undercut the real acceleration values: This applies equally to the Fiat 
500e ( − 12 %), the Opel Mokka e ( − 18 %), the Renault Zoe ( − 13 %) 
and the Peugeot e208 ( − 11 %). This is due to the significantly higher 
motor power outputs in the simulation. One possible reason for the big 
difference in performance is that manufacturers limit the motor torque 
for starting from standstill to avoid excessive wheel spin at full accel

Table 1 
Constant reference efficiencies for the consumption simulation.

Component Efficiency Reference

Battery 96.27 % [63]
Power Electronics 97.48 % [63]
Transmission 95.64 % [62]
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Fig. 12. Deviations in 0-100 km/h acceleration time for all 18 simu
lated vehicles.
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eration. This explanation is reasonable because the four vehicles 
mentioned were designed rather as city vehicles for which a high level of 
driving safety is more important than maximum longitudinal dynamic 
performance.

The consumption simulation shows an average deviation of − 2 % 
from the real WLTP-results. All deviations of the investigated vehicles 
are plotted in Fig. 13.

Compared to the results in [61] with an average deviation of − 10 %, 
we improved the simulation accuracy through the presented changes. 
We identified two main reasons for consumption deviations. Firstly, the 
vehicle mass, greatly influenced by the battery concept of the simulated 
reference model, affects the longitudinal simulation. Secondly, an older 
model year correlates with lower deviations. The efficiencies in the 
simulation represent state-of-the-art values from 2021 to 2022 [62,63]. 
From the analyzed vehicles, eight were released before 2021, nine are 
from 2021, and one is from 2022. Evaluation of the deviation confirms 
the trend of older vehicles having larger negative deviations than ve
hicles from 2021 and 2022. The Audi e-tron, released in 2019, was 
Audi’s first series production BEV. The simulated consumption with 
19.5 kWh/100km is − 15 % under the official WLTP-result of 23.00 kWh 
/100km. This trend can also be seen in the Jaguar I-Pace from 2018 with 
a deviation of − 15 %. An example of a more modern vehicle with a 
positive deviation is the Fiat 500e from 2021. The simulated consump
tion is +11 % higher than the real one. The comparatively best vehicle is 
the Tesla Model 3 from 2020, with a deviation of +17 %. The Model 3 
performs comparatively well in independent tests regarding efficiency, 
achieving 5 Green stars and a weighted overall index of 9.8 in the Green 
NCAP [66]. Additionally, the low mass is beneficial in the simulation. 
The Fiat 500e is the test’s lightest vehicle.

The Ecotest range of the real vehicle is calculated based on the bat
tery net capacity and the Ecotest consumption. Due to [43], both values 
include charging losses, which are eliminated when calculating the 
range. For vehicles without an ADAC-Ecotest and therefore no available 
range or capacity data, we used data of over 60 tested vehicles by the 
ADAC [32] and estimated the necessary values applying linear regres
sion. The deviations between simulated and real range are shown in 
Fig. 14.

Results of the range calculation show an average deviation of -3 %. 
Although the average deviation is low, there are deviations up to 30 % in 
both directions. The variations derive mainly from differences between 
simulated and real battery capacities and consumptions. One example of 
a significant deviation is the Audi e-tron. The divergence of around −
15 % in the consumption and a large battery capacity in the reference 
model show the vehicle’s potential. The cell dimensions installed in the 

digital reference model are distinct from the ones installed in the real 
vehicle. This leads to a distribution concept with twice the number of 
cells in the second level of the reference model. Besides, the net-to-gross 
factor of the real Audi e-tron is slightly lower than the computed mean 
value, yielding an additional growth of the capacity of about 4 kWh. 
Variations in consumption and capacity result in a relative range devi
ation of +30 %, indicating that our reference model achieves a signifi
cantly higher range than the real vehicle. Audi confirmed the potential 
in these two factors with the e-tron model improvement Audi Q8 e-tron. 
It has a 20 kWh higher battery capacity and a lower consumption [67]. 
This consequently leads to a higher range. Another example of a large 
positive deviation is the Polestar 2. Although detailed battery data and 
package factors are not available for this model, the real package factors 
are assumed to be significantly higher than the computed averaged ones. 
Hence, the cell dimensions of the digital reference model are precisely 
larger than the real dimensions, leading to a higher simulated battery 
capacity. Polestar has, analogously to Audi, already presented a model 
improvement, which is characterized not only by an increase in capacity 
but also by a reduction in consumption [68].

Considering vehicles with a large negative deviation, similar reasons 
can be found for their variance. Starting with the Mercedes EQS, the 
simulation shows a much lower available Lbatt than the real vehicle. One 
reason is the scaling of the rear machine. Because of the large torque the 
real electric machine provides, a higher scaling factor is computed, 
yielding a larger extent of the machine in a horizontal direction. Due to 
the smaller Lbatt, the cell dimensions in the simulated vehicle are smaller 
than the real ones. The Hyundai Ioniq 5 and Nio ET7 also show larger 
deviations in Lbatt and, consequently, a comparable difference in the cell 
dimensions. Additionally, all three vehicles are characterized by a high 
volumetric energy density. For example, while the simulation uses a 
mean energy density of 521.2 WhL− 1 for pouch cells, the cells installed 
in the Hyundai Ioniq 5 have a volumetric energy density of 644.9 Whl− 1.

4.2. Lateral dynamics simulation

The analysis of lateral dynamics follows the overall objective of the 
framework: While lateral dynamic evaluations in the automotive press 
such as AMS also include subjective evaluation components, this 
framework is intended to enable a purely objective, data-based evalu
ation of the lateral dynamics potential for different vehicles. To imple
ment this objective, we developed a regression-based approach that uses 
publicly available data and evaluates the lateral dynamics based on the 
driving maneuver of the 18m slalom. The regressively determined 
slalom speeds can be compared with real measured slalom speeds, which 
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Fig. 13. Deviations in consumption for all 18 simulated vehicles.
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Fig. 14. Deviations in range for all 18 simulated vehicles.
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enables an assessment of how above or below average a vehicle was 
designed in the area of lateral dynamics within the scope of its technical 
possibilities.

4.2.1. Model Choice and Data Basis
We chose the mathematical method of multiple linear regression for 

the regression-based lateral dynamics analysis. For this purpose, it was 
first necessary to build up a suitable data set based on publicly available 
data and to define a parameter to evaluate lateral dynamics. Both re
quirements were predetermined by the measured driving maneuvers of 
the automotive press since it was the only available source providing 
sufficient data at the time of data set creation.

To assess lateral dynamics, we selected the 18m slalom as our 
reference: This driving maneuver is used to evaluate the general vehicle 
handling [69]. The test setup for the maneuver is shown in Fig. 15, 
whereby the test driver has to drive around the 10 cones as quickly as 
possible. The average speed is measured using a light barrier-based time 
recording system.

To ensure comparability to the 18m slalom measurements, we used 
AMS as the sole data source: The magazine offers an adequately large 
number of BEV measurements with sufficient comparability of the test 
conditions: Although AMS tests vehicles all year round and accordingly 
at different asphalt and air temperatures, the test drives are always 
carried out in dry conditions on the same test track and on preheated 
summer tires [70].

The data set created for the regression comprises a total of 67 BEV 
vehicles of different body shapes (hatchback: 20, saloon: 13, Sports 
Utility Vehicle (SUV): 32, vans: 2 vehicles) and different vehicle classes. 
Accordingly, the data set represents a sufficiently general vehicle cohort 
regarding body shape and vehicle class. It can, thus, be regarded as a 
reference for the current state-of-the-art. To ensure comparability, only 
the measured values with activated Electronic Stability Program (ESP) 
were recorded, as this cannot be deactivated in all vehicles.

4.2.2. Structure of the regression analysis
In the data set created, the following independent variables were 

found to be statistically significant concerning the test speed in the 18m 
slalom: Firstly, the ratio of averaged track width of the front and rear 
axle and vehicle height as parameters for the center of gravity height and 
the magnitude of dynamic wheel loads when cornering [71]. Secondly, 
the averaged tire sidewall height as a measure of tire cornering stiffness 
as well as the maximum lateral forces that can be applied when cor
nering [72]. Thirdly, the vehicle mass as a further measure of the level of 
dynamic wheel loads when cornering.

The corresponding regression formula has an adjusted coefficient of 
determination of 64 % and is used to simulate the slalom speed of the 
reference vehicle. For this purpose, the track width, the height of the real 
vehicle, the calculated vehicle mass and, to ensure comparability of the 
simulated slalom value with the AMS measured value of the real vehicle, 
the AMS test tire dimensions are used.

4.2.3. Results of the lateral dynamics simulation
The deviations between simulated and real slalom speed, which are 

illustrated in Fig. 16, show an average deviation of +0.74 % for the 18 
benchmarked vehicles.

This numerically low deviation shows that the generality of the ve
hicles can be mapped with high accuracy using the selected approach, i. 

e. the initial objective of providing an objective evaluation approach for 
different vehicles is fulfilled.

Among the analyzed vehicles, the Tesla Model Y (-3 %) and Audi Q4 
e-tron (-2 %) have the largest negative deviation of the simulation value 
from the AMS results. XPeng P7 (+4 %), Renault Zoe, and BMW iX (both 
+3 %) show the greatest positive deviation compared to the ones by 
AMS.

The below-average performance of the XPeng P7 in the AMS slalom 
test (+4 %) contradicts expectations: As a sedan with a low center of 
gravity and a multi-link rear axle, the vehicle has favorable prerequisites 
for a high slalom speed. However, based on the test results, a conser
vative setup of the ESP can be assumed: AMS states in its test that the P7 
is slowed down early by the ESP during road tests [73]. On the one hand, 
a possible reason for this ESP control strategy, which suggests a lack of 
fine-tuning, is the fact that XPeng, as a respectively newly founded car 
manufacturer (2014), has less expertise in tuning chassis than estab
lished car manufacturers. On the other hand, in view of the compara
tively low selling price, it can be assumed that less money was invested 
in fine-tuning of chassis and suspension: This process is carried out by 
dedicated test engineers [69], which requires a considerable amount of 
time and costs.

The below-average performance of the BMW iX can be explained by 
the chassis setup of the xDrive50 motor variant: As AMS states in the 
test, the chassis setup is comfort-oriented and shows a tendency to roll in 
road tests [74]. This chassis setup was presumably chosen to maximize 
ride comfort, which is an important feature in the upper mid-range class. 
However, the low spring rates required in this design strategy in 
conjunction with the high body of an SUV result in higher dynamic 
wheel load differences when cornering and, therefore, higher slip angle 
requirements on the axles. This results in lower speeds in the road test.

The same applies to the Renault Zoe (+4 %): AMS’ test reveals a 
comfort-oriented chassis setup with a tendency to roll [75], suggesting 
that low spring rates were used. The effect on the slalom speed in 
combination with the relatively high body for a hatchback (Renault Zoe: 
1562 mm, Peugeot e208: 1430 mm) is comparable to the BMW iX. 
Another reason for the below-average performance compared to the 
simulation is the fact that the Renault has a twist-beam rear axle, which 
has a low lateral stiffness [69]. Therefore, less lateral force compared to 
a multi-link rear axle can be transmitted. The lower achievable lateral 
acceleration results in lower speeds in the road test. The negative in
fluence of the twist beam rear axle also appears on the other vehicles 
equipped with this axle design: For Fiat 500e, Peugeot e208 (both +1 %) 
and Opel Mokka e (+2 %), the simulated values are all higher than the 
AMS results of the real vehicles. These findings, therefore, show that a 

3 m

18 m

180 m

Fig. 15. 18m-slalom driving maneuver [70].
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Fig. 16. Deviations in slalom velocity for all 18 vehicles.
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multi-link rear axle allows higher cornering speeds due to the higher 
lateral stiffness.

In contrast, for the vehicle with the largest negative deviation, the 
Tesla Model Y, the opposite reasoning applies as for the BMW iX and 
Renault Zoe: The Tesla Model Y was found to have a firm suspension 
setup in the AMS test [76]. This fact indicates that Tesla has set the 
spring rates to such a high level that, despite the high SUV body, 
comparatively low wheel load differences occur when cornering. This 
allows for higher cornering speeds. The AWD, which enables better 
vehicle handling characteristics compared to two-wheel drive (2WD) 
vehicles due to additional degrees of freedom in vehicle dynamics 
control [77], is another factor that has a positive effect on the slalom 
speed of the real vehicle.

Finally, the Audi Q4 e-tron, which performs significantly better 
compared to the other MEB-based SUV Skoda Enyaq and VW ID.4 (-2 %), 
can also be assumed to have a firmer chassis setup: In contrast to the 
Skoda Enyaq and VW ID.4 with RWD, the Audi Q4 e-tron has AWD and 
significantly higher engine power (+80 kW). Therefore, a firmer sus
pension setup adapted to this can be expected. Another factor for better 
performance in the slalom test is that, as with the Tesla Model Y, the 
AWD of the Q4 e-tron allows for longitudinal torque control.

4.3. Simulation of the charging time

This section describes the charging time. Analogously to the previous 
sections, an overview of the simulation is given, and the results are 
shown afterward.

4.3.1. Charging time simulation
As Section 2.2.3 mentions, the tool utilizes generic charging curves 

to simulate the charging time. For this purpose, four generic and stan
dardized curves were generated based on real charging curves. To 
establish these generic curves, the real charging curves of the 18 eval
uated vehicles were concentrated into clusters based on their qualitative 
distribution. Three main clusters were identified, each represented by 
one generic charging curve. Additionally, a fourth cluster was imple
mented to avoid a major gap between two clusters and thus the favor
ing/disfavoring of certain vehicles.

To select a certain curve, a charging factor is calculated by dividing 
the mean charging power inside the fast charging area and the maximal 
charging power. Both values, mean and maximal charging power, and 
the real fast charging time are provided by [33] to provide suitable data 
for an objective comparison. Additionally, the real net capacity is used. 
The simulation of the capacity may lead to a high variance. For example, 
the simulated capacity of the Audi e-tron is 17 % higher than the real 
one. Therefore, more energy is necessary to charge the battery up to 
80 %-SOC, which leads to a higher charging time. Using the real net 
capacity prevents double evaluation of the simulated capacity and en
sures comparability with the real charging time.

The charging factor determines the charging curve whose charging 
factor is closest to the real one. Given the real maximal charging power, 
the selected charging curve is scaled.

The simulation is based on the approach provided by Cao et al. [78], 
who calculated the charged energy using the time integral over the 
charging power. Our simulation estimates the charging time using 
Equation 2. 

80 %⋅Ebatt,real − 10 %⋅Ebatt,real

Pcharg,mean⋅ηcharg
⋅60 min (2) 

Instead of the integral, the average charging power Pcharg,mean is used. 
This mean power is calculated from the scaled generic charging curve. 
As coulombic efficiency ηcharg, a value of 95 % is chosen [79].

4.3.2. Results of the charging time simulation
The most comparable between the four generic profiles representing 

charging factors of 0.64, 0.73, 0.79, and 0.89, respectively, is applied in 
the simulation. Fig. 17 shows the individual deviations for all vehicles. 
Applying the four charging profiles to all vehicles results in an average 
deviation of +0.67 %.

The Tesla Model Y shows a deviation of almost -30 % due to the 
simulated average charging power. Using the scaled charging curve 
(with a charging factor of 0.64) yields an average simulated charging 
power of 162 kW based on the maximum charging power of the Tesla 
Model Y of 250 kW available only at the Tesla Superchargers [80,81]. 
The computed average charging power is significantly above the real 
average power of 108 kW. The maximum charging power of the Tesla 
Model Y can only be maintained for a short time at the beginning of the 
charging process and then drops quickly [82]. Accordingly, the real 
charging curve of the Tesla Model Y results in a charging factor of 0.43. 
This explains the large differences between simulated and real charging 
power. Further development of the Tesla Model Y has already yielded an 
increased mean charging power up to 124 kW [83].

The BMW iX and the Mercedes Benz EQS show a positive deviation of 
up to 5 %. A charging curve with a lower charging factor than the real 
one is selected for both vehicles. For example, the real charging factor of 
the BMW iX is 0.76. Therefore, the simulated curve with a factor of 0.73 
is selected. This results in a lower average charging power of the digital 
reference model and, consequently, a higher simulated charging time. 
The same behavior can be observed when looking at the Hyundai Ioniq 
5. However, with a deviation of the charging time of just under one 
minute, the method shows feasible results for an exemplary vehicle with 
an 800 V-architecture [84].

The simulation behaves oppositely for the Tesla Model 3 and Polestar 
2. A simulated charging curve with a higher charging factor is used for 
both vehicles. This leads to a higher average charging power of 110 kW 
for the Tesla Model 3 (compared to 105 kW for the real vehicle) and, 
therefore, to a lower simulated charging time. However, the charging 
efficiency of the Tesla 3 has a mitigating influence on the deviation in 
charging time, as the real vehicle can achieve an efficiency of up to 99 % 
when charging at a Tesla Supercharger [85].

5. Electric vehicle engineering quality evaluation

To evaluate the engineering quality of an electric vehicle concept, 
the here presented approach compares the real vehicle concept with its 
reference model. By this procedure, the initial evaluation of a vehicle is 
solely based on measurable evaluation criteria and their realization of 
the vehicle concept compared with the state-of-the-art, which the 
reference model represents.
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Fig. 17. Deviations in charging time for all 18 simulated vehicles.
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In this section, the whole evaluation process within the tool is 
described and discussed using an example vehicle. For this purpose, the 
Hyundai Ioniq 5 was selected because it achieves an average score in the 
final ranking with best-in-ranking and worst-in-ranking individual re
sults. The section concludes with an exemplary benchmark of 18 existing 
electric vehicle concepts and a discussion of the results.

The evaluation process can be separated into four steps, which are 
represented by the following Sections. First, the single-vehicle attributes 
are evaluated based on their deviation from the reference model. In the 
second step, the individual scores for the vehicle attributes are calcu
lated. Then, the combined scores are derived from the individual scores. 
Finally, vehicle concepts are compared, and a benchmark is created.

5.1. Evaluation of vehicle characteristics

Electric vehicle concepts can be evaluated based on various criteria, 
which are subjectively determinable or immeasurable. Only the previ
ously presented objectively measurable evaluation criteria were chosen 
for the scope of this engineering quality evaluation. They can be sepa
rated into performance-related and comfort-related criteria. To evaluate 
the performance of a vehicle concept we use the acceleration time from 
0 − 100 km/h, the consumption according to the WLTP [42], the electric 
range according to the ADAC Eco-Test [43], the charging time and the 
slalom velocity as described in Section 4.2. For the assessment of com
fort, we apply four evaluation criteria. H61-1 and H61-2 describe the 
available head space in the first and second row, respectively. L50-2 
defines the leg space of the rear passengers. The fourth comfort crite
rion is the trunk volume.

The criteria selection is based on the importance of the connected 
customer values and publicly available car reviews. The selection should 
be seen as exemplary and not as an all-embracing selection of criteria to 
completely evaluate a BEV in all vehicle characteristics. Based on the 
desired benchmark different criteria can be chosen. The electric range, 
consumption, and charging time are still important purchase criteria 
[86,87]. These criteria directly relate to the extent of how well a BEV is 
engineered in its electric-specific characteristics [9,88]. To incorporate 
driving dynamics, the acceleration time was chosen for longitudinal 
dynamics and the slalom velocity for lateral dynamics accordingly [69, 
89]. Both criteria allow an initial evaluation of the realized driving 
dynamics by the engineers. Headroom and legroom influence the 
perceived personal space of the driver and thus significantly the expe
rienced seat comfort [90]. They describe how well the interior package 
was designed by the engineers.

For all of the nine evaluation criteria the deviation Δx of the simu
lated value of the reference model xsim from the realized value in the real 
vehicle concept xreal is calculated by 

Δx =
xsim − xreal

xreal
⋅100%. (3) 

The deviations are used as percentages. A positive deviation de
scribes a lower realized value in the real vehicle concept than the 
reference model. A negative deviation relates to a higher realized value 
in the real vehicle concept compared to the reference model.

For the example vehicle, the Hyundai Ioniq 5, the deviations in 
Fig. 18 were calculated based on its simulated reference model. The 
results of the example vehicle encompass all possible scenarios: supe
rior, similar, or inferior realized values compared to the reference 
model. For example, the deviation in the electric range of − 25 % in
dicates a significant improvement in the real vehicle concept compared 
to the state-of-the-art. The consumption deviation is − 0.65 %, implying 
a consumption level comparable to the state-of-the-art. Conversely, the 
deviations of the comfort criteria are all positive, indicating that the real 
vehicle concept is behind the state-of-the-art in terms of comfort. The 
deviation of the trunk volume is +21 %. However, the deviations alone 
are insufficient to evaluate the vehicle characteristics, so individual 
scores must be introduced.

5.2. Calculation of individual scores

A comparison to other vehicles is necessary to evaluate and rate an 
electric vehicle concept. The deviations from their reference models 
must also be calculated for all other vehicles in the benchmark. By using 
the deviation from the state-of-the-art represented by the reference 
model and not the absolute values of the evaluation criteria, vehicles 
from different vehicle classes can be compared without favoring high- 
priced vehicles with more expensive technologies. Based on the entire 
deviation data from all vehicles in a benchmark, individual scores for 
each evaluation criterion for every vehicle are calculated.

Since it depends on the evaluation criteria, if a positive or negative 
deviation is evaluated as good, the sign of the deviation must be inverted 
for some criteria. This adaption of the deviations leads to higher de
viations, referring to better realizations of the vehicle characteristics in 
the real vehicle concept. But this does not imply that all deviations must 
be positive. Based on these adapted deviations, the individual scores of 
the vehicle characteristics can be calculated. Fig. 19 illustrates the 
calculation procedure.

The scoring scale reaches from 0 to 100 with 100 as the best score. 
The maximal adapted deviation maxΔx and minimal adapted deviation 
minΔx of all vehicles in the benchmark are extracted for every evalua
tion criterion. These values correspond to scores S(maxΔx) of 100 points 
and S(minΔx) of 0 points, respectively. The score S(Δxveh.X) for a specific 
deviation is then calculated by linear interpolation using the following 
equation 

Fig. 18. Results of the vehicle individual evaluation between the real vehicle 
and the reference model exemplary shown on the Hyundai Ioniq 5.
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Fig. 19. Calculation procedure of the individual scores.
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S(Δxveh.X) = S(minΔx) + (Δxveh.X − minΔx)

⋅
S(maxΔx) − S(minΔx)

maxΔx − minΔx
.

(4) 

This calculation scheme shows that the scores of the evaluated 
vehicle concept depend on how the other vehicles in the benchmark 
perform in comparison. For example, if more vehicles in the benchmark 
have a better vehicle concept than the state-of-the-art, the median is set 
to a higher standard. Therefore, vehicles are penalized more for 
underperforming the state-of-the-art defined by their reference model. 
This characteristic of the evaluation scheme is also evident in the indi
vidual scores of the Hyundai Ioniq 5, which are shown in Fig. 20. The 
highest negative deviation in the range of the real vehicle compared to 
its simulation reference presented in Section 5.1 results in a maximum 
score of 100. Thus, the Hyundai Ioniq 5 is the best vehicle in the electric 
range within the benchmark in this study. This is an example of a high 
deviation resulting in a score at the high or low end. A contrary example 
of a high deviation that does not directly lead to a high score is the trunk 
volume. The example vehicle has a high deviation of +21 % but scores a 
mediocre 45 points in the evaluation criterion. This is a good example 
that not the actual values or the absolute deviations decide the rating but 
the deviation from the state-of-the-art compared to the other vehicles in 
the benchmark. The deviation of the consumption of the example 
vehicle is near 0 %, resulting in an individual score of 45.5 and not 50. 
This illustrates that the scale depends on the entire benchmark of ve
hicles and that 50 points do not directly correlate to the state-of-the-art. 
Fig. 20 also shows two other vehicles, vehicle B from the upper end of 
the final benchmark and vehicle C from the lower end. The edges of the 
area of vehicle B show results of 46 points and higher, whereas the edges 
of vehicle C only surpass the 50 points in two evaluation criteria. 
Whereas the edges present the individual results in their respective 
criteria, the area is a clear indicator of whether a vehicle is an overall 
highly ranked or rather lower ranked vehicle. Fig. 20 not only presents 
rather lower specific results for vehicle C, but the area is the smallest 
compared to the other illustrated vehicles. The figure shows that the 
Hyundai Ioniq 5 ranks between the two vehicles. The overall perfor
mance significantly influences the final benchmark result, combining 
the individual scores.

5.3. Derivation of combined scores

The individual scores calculated according to Section 5.2 are the 
most basic evaluation level. They allow a distinctive benchmark in each 
of the evaluation criteria. A combination of the individual scores is 
beneficial for a more abstract and high-level evaluation of an electric 
vehicle concept. Combined scores allow the clustering of vehicle char
acteristics and emphasis on specific areas of the benchmark. Here, a 
weighted sum of individual scores as a combined score is proposed.

5.3.1. Definition of the weight factors
To consider specific customer preferences in the benchmark, we 

conducted a survey to determine the weighting factors. Other options to 
define the weighting factors could be using expert rankings, individual 
weighting based on the benchmark goal, and homogenous weighting of 
all criteria. For the results of this study, a survey with 79 participants 
with academic or industrial backgrounds in automotive engineering was 
conducted. The average age of the respondents is 28, and the gender 
distribution is 92 % male and 8 % female. Due to the inhomogeneous 
gender distribution the representativeness is limited. The respondents 
were asked to sort the aforementioned evaluation criteria by descending 
importance. The H61-1 and H61-2 measure were combined to head 
space and the L50-2 measure was paraphrased as leg space. This does not 
impede the combination of these individual scores as shown in Section 
5.3.2. The weight factor wx for each evaluation criterion x is therefore 
calculated as 

wx =

∑n
i=1Nx,i⋅(n + 1 − i)

p⋅
∑n

i=1i
(5) 

with n as the count of evaluation criteria, p the number of survey par
ticipants and Nx,i the sum of all votes for the criterion x with the 
importance rating i. Thus, the weight factor is between 0 and 1.

The survey results revealed the weight factors in Table 2 calculated 
as described above. The electric range, charging time, and consumption 
are still the most important customer-related features for the survey 
respondents, while leg space is rated as least important.

5.3.2. Calculation of the combined scores
Which evaluation criteria should be combined into more high-level 

scores is an individual decision and depends on the benchmark’s 
scope. For the scope of this study, all evaluation criteria are combined 
into one Engineering score. The term Engineering score was chosen 
because the evaluation procedure represents a measure of how well the 
electric vehicle was engineered compared to the state-of-the-art.

In the first step, the individual scores of H61-1 and H61-2 are com
bined into one Z-direction score. This is done to ensure that for comfort 
criteria every axis of the coordinate system is weighted equally. Since for 
the X-direction, only one evaluation criterion is considered, and for 
coherent naming, the L50-2 score is renamed to the X-direction score. 
Due to these changes, the survey in Section 5.3.1 can subsequently be 

Fig. 20. Results of multiple vehicle evaluation with the transferred character
istics into point scores exemplary shown on the Hyundai Ioniq 5 and two other 
vehicles within this study.

Table 2 
Weight factors of all evaluation criteria based on the results of the presented 
survey.

Evaluation criterion Weight factor in %

acceleration time 9.5
consumption 15.5
electric range 19.7
charging time 17.7
slalom velocity 9.7
head space 10.2
leg space 6.6
trunk volume 11.0
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used to calculate the weight factors for the Engineering score without 
explicitly asking for the SAE comfort measures.

In the second step, the Engineering score is calculated as a weighted 
sum of all evaluation criteria with the weight factors in Table 2.

The example vehicle, Hyundai Ioniq 5, achieves an Engineering score 
of 61.3. Even though the vehicle scores below 50 points in all comfort- 
related evaluation criteria and was worst-in-class in leg space within the 
benchmark in this study, high scores in evaluation criteria with high 
weight factors compensate for the below-average rating for comfort. 
Especially reaching 100 points in the electric range with the highest 
weight factor contributes to that. This illustrates how important a 
thorough definition of the weight factors is and what influence they have 
on the final results.

5.4. Benchmark of electric vehicle concepts

The final step of the presented evaluation process is the bench
marking of multiple vehicles based on the calculated Engineering score. 
Whereas a benchmark based on a single individual score allows con
clusions on specific customer-related features, benchmarks based on 
combined scores allow a more high-level rating of vehicle concepts. 
Various automotive magazines also use a final score that combines all 
evaluation criteria to assign a final assessment to a vehicle. These scores 
determine the best vehicle concept in a specific category or an overall 
best concept.

The evaluation procedure objectively assesses electric vehicle con
cepts independent of their UVP. Only measurable evaluation criteria are 
used. By comparing the vehicle characteristics to a simulated reference 
model representing the state-of-the-art rather than other vehicles, the 
UVP is not regarded. Only in the final benchmark of multiple vehicles, 
these vehicles are compared against each other. Further measures are 
taken to ensure objectivity and comparability, including using the same 
sources for the real vehicle data and the same database to represent the 
state-of-the-art for the simulation of all vehicles.

5.5. Exemplary benchmark

Table 3 shows the ranking based on the Engineering score. The first 
five places in the ranking are the Tesla Model 3, Audi Q4 e-tron, Mer
cedes EQS, VW ID.3 and BMW iX. With an Engineering score of 80.2, the 
Tesla Model 3 reaches the highest score in the benchmark, out
performing the Audi Q4 e-tron by 9.3 points. This can be explained by 
the overall high individual scores in all evaluation criteria. The last three 
places are the Jaguar I-Pace, Renault Zoe, and the Audi e-tron. The Audi 
e-tron reaches the lowest Engineering score of 33.9 points, which is 9.52 
points less than the Renault Zoe. This can also be explained by the low 

individual scores in evaluation criteria with high weight factors like 
consumption and range. The benchmarked model of the Audi e-tron 
(SOP in 2019) can be considered outdated compared to the here-defined 
state-of-the-art.

The results show that especially purpose design vehicles like the 
Tesla Model 3 or the Mercedes EQS achieve, on average, higher scores 
compared to conversion design vehicles like the Renault Zoe or the Fiat 
500e. This shows that vehicles that are designed and engineered from 
the start as BEV without the restrictions from a conventional powertrain 
can offer a higher customer value. Besides, vehicles based on the same 
architectural platform score similarly, such as the MEB vehicles. This 
emphasizes the importance of thorough engineering of the platform as it 
significantly influences the engineering quality. One exception is the 
Skoda Enyaq, which scores significantly lower than the other MEB ve
hicles. This is rooted in the benchmarked pre-model-improvement 
version from 2021, for which the whole data basis was available when 
creating the benchmark. The presented methodology identified the 
motor’s low torque and the small battery capacity as optimization po
tential. Thus the methodology can identify the optimization potential of 
current vehicles or concepts and help engineers to improve the charac
teristics during the development process of new vehicles. Both described 
matters were addressed by the model improvement in 2023. Another 
notable result is the independence of the Engineering score results from 
the vehicle price. In Reference to Fig. 1, Fig. 21 plots the Engineering 
score over the UVP with a linear trendline. The coefficient of determi
nation R2 for the plotted linear trendline is 0.34 %. Based on these re
sults, no significant dependency of the Engineering score from the UVP 
is derived. Thus the presented methodology purely focuses on technical 
engineering characteristics and not on financial topics. As mentioned in 
Section 1, this tool’s focus is on highlighting variances from the 

Table 3 
Benchmarking results of the current state-of-the-art battery electric vehicle concepts.

Vehicle Model Year Motor front (power) Motor rear (power) Cell chemistry Battery capacity (net) Engineering score

Tesla Model 3 Standard Range Plus 2021 - PSM (239 kW) NCA 58 kWh 80.2
Audi Q4 50 e-tron advanced quattro 2021 ASM (80 kW) PSM (150 kW) NMC 77 kWh 70.9
Mercedes EQS 580 4MATIC 2021 PSM (140 kW) PSM (245 kW) NMC 107.8 kWh 68.8
VW ID.3 Pro Performance 1st Max 2020 - PSM (150 kW) NMC 58 kWh 68.5
BMW iX xDrive50 2021 FSM (190 kW) FSM (230 kW) NMC 105.2 kWh 68.1
VW ID.4 Pro Performance 1st 2020 - PSM (150 kW) NMC 77 kWh 64.3
XPeng P7 RWD Super-Long Range Zhizun 2020 - PSM (196 kW) NMC 75 kWh 61.3
Hyundai IONIQ 5 Project 45 2021 PSM (70 kW) PSM (155 kW) NMC 70 kWh 61.3
Peugeot e-208 136 GT 2020 PSM (100 kW) - NMC 48.1 kWh 59.4
NIO ET7 100 kWh 2022 PSM (180 kW) ASM (300 kW) NMC 90 kWh 57.0
Skoda Enyaq iV50 2021 - PSM (109 kW) NMC 52 kWh 54.4
Tesla Model Y Maximum Range AWD 2021 ASM (158 kW) PSM (220 kW) NMC 75 kWh 52.9
Opel Mokka Electric Ultimate 2021 PSM (100 kW) - NMC 48.1 kWh 51.5
Polestar 2 Long Range Dual Motor 2020 PSM (150 kW) PSM (150 kW) NMC 75 kWh 48.8
Fiat 500e La Prima 2020 PSM (87 kW) - NMC 37.3 kWh 47.4
Jaguar I-Pace EV400 S AWD 2018 PSM (147 kW) PSM (147 kW) NMC 84.7 kWh 43.9
Renault Zoe R135 Z.E. 50 Experience 2019 FSM (100 kW) - NMC 52 kWh 43.4
Audi e-tron 55 quattro 2019 ASM (140 kW) ASM (160 kW) NMC 83.6 kWh 33.9
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Fig. 21. Final results of the presented methodology with the 18 electric vehicle 
concepts within this study (blue points) with a trendline indicating indepen
dence to the UVP.
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trendline in Fig. 1 as an indicator for engineering quality. The red arrow 
in Fig. 21 depicts the negative deviation of the Audi e-tron from the 
overall trendline as an example of an expansive vehicle with a low En
gineering score. As discussed before, the reasons for the low rating can 
be directly extracted from the simulation results. Analogously to the 
vehicle with the biggest positive variance to the trendline in Fig. 1, the 
green arrow pointing to the Tesla Model 3 illustrates the same effect in 
the opposite direction, presenting the overall best vehicle in our simu
lation result. The results from the benchmark are directly explainable 
and purely objective.

6. Summary and conclusions

This study provides a methodology for objective and cost- 
independent benchmarking analysis of the most relevant features of 
battery electric vehicles, with Fig. 21 proving the optimization 
compared to the state-of-the-art in Fig. 1. Collocating real vehicle data of 
18 current BEV with state-of-the-art parameters regarding electric 
powertrain components, meaningful results are obtained from this work, 
comparing the automatically generated results to current car reviews. 
Applying various methods, a broad range of disciplines are considered 
within this analysis. The major discoveries from this study can be 
summarized as follows:

• Individual vehicle evaluation through state-of-the-art reference 
model. The combination of real vehicle parameters, parameters 
based on regressive analysis, and parameters taken from literature 
allows the conception of average vehicle concepts and their respec
tive performance characteristics and comfort features. With an 
average electric vehicle concept based on the respective parameter 
set, vehicles are evaluated regarding the level of potential exploited 
within the vehicles’ boundaries.

• Holistic approach of identifying vehicle concept characteristics. 
Based on the analysis of current electric vehicle evaluation criteria of 
established car reviewers, the most relevant features for customers 
were identified. Based on these features, different methods were 
implemented to identify these parameters for comparison with the 
real vehicle characteristics. The described methodologies are based 
on official standards and analytical and regression models and pre
sent meaningful and reasonable results for the respective charac
teristics. Considering the most relevant features, different design 
focuses of manufacturers were taken into account, collocating in an 
overall holistic final evaluation.

• Expedient evaluation scheme weighting costumer relevant 
characteristics. The most dominant deviations of specific vehicles 
in single features were presented and discussed in their respective 
sections by explanations through specific concept strategies or ideas 
and in reference to similar results from current reviews. The evalu
ation scheme shows an expedient concept of transferring the vehicle- 
specific results into a comparison across multiple vehicles regarding 
the single disciplines. Applying the results from the presented study, 
which carried out weighting factors for these disciplines due to the 
opinion of engineers in research and the automotive industry, a final 
score is collocated, ranking the vehicles within this study.

This methodology allows the evaluation of vehicle concepts without 
the need for physical prototypes. This supports engineers from the 
automotive industry in optimizing their concept development processes, 
evaluating their ideas in the early stages, and potentially deciding on 
better overall vehicle concepts. Also, this enables researchers to evaluate 
vehicle concepts cost-efficiently. With the opportunity to transfer the 
presented methodology to other domains (e. g. component concepts). 
Considering that there are many different component concepts in the 
electric vehicle market, superior technology concepts can be identified, 
and manufacturers can focus on these technologies. By adopting the 
weight factors according to individual focus areas, the overall focus is 

shifted, and results will adapt adequately, allowing for the identification 
of individual optimal solutions.

Data availability

We want to encourage researchers and engineers from the automo
tive industry to comprehend our work and to enable them to apply our 
methodology to their vehicle concepts, evaluate their work, and identify 
optimization potentials. Therefore, our methodology is provided as open 
source accessible via FTMGithub. Unfortunately, we cannot share the 
parameter data of all 18 vehicles since it is confidential, but we share the 
two vehicles that have been analyzed in [10,11].

CRediT authorship contribution statement

Nico Rosenberger: Conceptualization, Methodology, Investigation, 
Resources, Writing – original draft, Writing – review & editing, Project 
administration. Moritz Fundel: Investigation, Writing – original draft, 
Writing – review & editing, Visualization. Simon Bogdan: Investiga
tion, Writing – original draft, Writing – review & editing, Visualization. 
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