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Abstract

Reverse engineering of internal vehicle communication is a crucial discipline in vehicle

benchmarking. The process presents a time-consuming procedure associated with high

manual effort. Car manufacturers use unique signal addresses and encodings for their

internal data. Accessing this data requires either expensive tools suitable for the respective

vehicles or experienced engineers who have developed individual approaches to identify

specific signals. Access to the internal data enables reading the vehicle’s status, and thus,

reducing the need for additional test equipment. This results in vehicles closer to their

production status and does not require manipulating the vehicle under study, which

prevents affecting future test results. The main focus of this approach is to reduce the

cost of such analysis and design a more efficient benchmarking process. In this work, we

present a methodology that identifies signals without physically manipulating the vehicle.

Our equipment is connected to the vehicle via the On-Board Diagnostics (OBD)-II port

and uses the Unified Diagnostics Service (UDS) protocol to communicate with the vehicle.

We access, capture, and analyze the vehicle’s signals for future analysis. This is a holistic

approach, which, in addition to decoding the signals, also grants access to the vehicle’s

data, which allows researchers to utilize state-of-the-art methodologies to analyze their

vehicles under study by greatly reducing necessary experience, time, and cost.

Keywords: reverse engineering; signal identification; automotive ethernet; diagnostics

over internet protocol; unified diagnostic service; machine learning

1. Introduction

According to [1], published in April 2024, electric vehicles accounted for 18 % of vehi-

cle sales in 2023, rising up from 14 % in 2022 and only 2 % in 2018. This rise has been mainly

led by governmental policies of restricting conventional powered vehicles [2–4] and by

subsidizing purchases of electric vehicles [5]. Following these policies, original equipment

manufacturers (OEMs) increased their research and development (R&D) investment in

battery electric vehicle (BEV) technologies [6]. Focusing on established technologies for

powertrain components, e.g., electric motors used in machine tools, new companies have

entered the electric vehicle market with innovative concepts representing serious competi-

tion for OEMs. The current generation of BEVs and powertrain components illustrates the

variety of different technologies applied in vehicles [7], and thus, no superior concept has

been found. This was also shown in a benchmarking study where some current BEVs with

different component concepts were compared on the vehicle level [8]. Identifying the most
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promising electric vehicle and powertrain concept and assuming a leading position in the

electric vehicle market make this a crucial time for all vehicle manufacturers.

However, investing time and money in R&D of multiple potential technologies and

testing prototypes with multiple powertrain concepts does not present a target-oriented

approach to the identification of superior electric vehicle concepts since these variants have

already entered the market and are available. This leads to an approach of analyzing cur-

rently available vehicle and powertrain concepts and aiming to optimize R&D investments

to focus on the most promising technology.

A well-known process for identifying such superior technologies is so-called bench-

marking. Benchmarking is performed in multiple areas and in different approaches, with

product benchmarking as the concept of evaluating competitors’ products, investigating their

concepts, and identifying their potential [9,10]. In the automotive industry, OEMs have

been profiting from this process, better known as competition analysis, for many years to

observe innovations featured in newly released vehicles by competitors.

Even though this process has been performed for a long time and OEMs have opti-

mized this process over the years, it remains a time- and cost-consuming process. Not

only does performing all targeted test procedures require high effort, but also preparing

the vehicles under study for data acquisition is crucial for the following analyses. Data

can either be collected by applying external sensors and manipulating the vehicle and its

powertrain, or by reading the internal vehicle communication.

The widely used controller area network (CAN) bus and the emerging Automotive

Ethernet standard are key technologies for communication between the electronic con-

trol units (ECUs) in modern vehicles. However, the communication is encoded with

manufacturer-specific codes to prevent access to the information that is sent within the

bus system [11]. Reverse engineering is the process of identifying these encodings and

converting the signals from meaningless data bytes into actual physical parameters. This

process, unfortunately, still remains a complex and time-consuming task [12], which re-

quires experienced engineers and signal-specific approaches to identify the signals that are

required for the respective benchmarking tests [13].

Literature research of vehicle benchmarking [14,15] confirms that relying on internal

vehicle communication delivers sufficient results since both studies have been performed

analyzing the CAN data of the vehicle under study, and the results provide significant infor-

mation, which can, e.g., be applied in parameterizing or validating simulation models [16].

Besides the quality of the results in vehicle benchmarking, the significance of such analyses

is given by qualitative results, e.g., by differences in results due to deviating boundary

conditions from the official regulations.

In contrast to a detailed analysis of a single vehicle under study, when focusing on

analyzing multiple vehicles, the current challenge with reverse engineering of the internal

vehicle communication becomes obvious. In studies of Oh et al. [17], where 27 BEVs were

included, and Grunditz et al. [18], who investigated 40 BEVs, it is shown that the analysis

was limited to a small number of signals since more signals would have required more

detailed reverse engineering of many different manufacturers with different encodings.

Highlighting the need for more advanced reverse engineering methods, studies [19–23]

have tried to optimize the current process through automation. In these studies, several

approaches have been developed to solve specific challenges by either simplifying or

accelerating the manual procedures [19,20] or by implementing models for automating

single modules [21–23]. The most comprehensive study is presented by Verma et al. [24],

which offers a multi-step pipeline for automated reverse engineering, based on a former

publication of Verma et al. [25], and concludes by providing all potential steps for reverse

engineering. However, this approach still lacks one important aspect: data acquisition.
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The pipeline presented within these two studies relies on already gathered data, which

is a limiting factor when simplifying the reverse engineering process. To collect this

data, a direct connection to the bus system is required, which can only be achieved by

manipulating the vehicle under study to provide physical access to the wiring.

1.1. Contributions

Therefore, this article presents a methodology that allows researchers and engineers

to fully automate the reverse engineering process. We introduce an innovative procedure

that includes requesting a selection of interesting signals, capturing these signals in appro-

priate sampling frequencies, and identifying and converting these signals into the targeted

physical parameters. Our procedure not only provides a fully comprehensive pipeline,

but it also ensures the production status of the vehicle under study by communicating via

the UDS protocol with our equipment connected to the vehicle’s OBD-II port [26]. This,

in combination with a time reduction in the whole reverse engineering process, will also

enable researchers to optimize not only the process of reverse engineering but also the

process of vehicle benchmarking, since vehicles can be investigated during a rental period.

The main contributions of this work are summarized as follows:

• Holistic, practical, and modular approach of reverse engineering of bus data via UDS

protocol communication.

• Automatic reverse engineering pipeline consisting of signal discovery, signal and

ground truth data capture, and signal identification to physical meaning.

• Cost-effective application using standardized test or sensor equipment and avoiding

manipulation of the vehicle under study.

• Time optimization applying efficient methods and experiment design.

1.2. Layout

This study presents the described methodology as follows: In Section 2, we intro-

duce our concept after describing the vehicle under study and the test equipment. We

explain the design of experiments for the respective parameters and the methodology for

identifying and decoding the signals. In the following section, Section 3, we show the

results divided into single steps through the pipeline and evaluate them against manually

reverse-engineered reference signals in [27] before we discuss our achievements and open

challenges later in the section. Section 4 concludes the main findings of this study and

gives an outlook.

2. Materials and Methods

In this section, we introduce the vehicle under study and describe the pipeline for data

access. With access to potential signals, we explain the experiment design for our ground

truth data collection and the methodology for identifying the signals of interest.

2.1. Vehicle Under Study

Without loss of generality, all data gathering and analysis shown in this study was

performed with a Porsche Taycan from April 2022. Like most manufacturers, Porsche

produces the Taycan with multiple (optional) upgrades and additions and has already been

subject to major design changes [27]. Apart from changes in design and hardware, the

software of the ECUs also undergoes regular updates, which can also be distributed via

over-the-air updates. The software configuration of the vehicle under study (VUS) at the

time of writing is documented in Table A1.

Two features of the VUS are worth highlighting: First, it is equipped with a two-speed

transmission, designed to improve powertrain efficiency across a wide range of speeds.
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Second, the vehicle’s chassis level is adjusted automatically to optimize air flow at higher

velocities, although manual adjustment is also possible.

2.2. Pipeline for Signal Discovery

Directly accessing the data busses of the VUS without physically manipulating it,

thus voiding any warranty status, was deemed infeasible. Our approach uses the OBD

connector through which we establish a Unified Diagnostics Services on Internet Protocol

(UDSonIP) session over Diagnostic communication over Internet Protocol (DoIP).

2.2.1. Physical Connection

ISO 13400-4 [28] defines two pin-outs for Ethernet-based communication, named

Option 1 (Figure A.1 in [28]) and Option 2 (Figure B.1 in [28]), from which vehicle manufac-

turers may freely choose. In order to support both options, two cables with a J1962 [29]

male connector on one end and an RJ45 [30] male connector on the other with a 1 m CAT5

Ethernet cable in between them were manufactured. For both cables, the RJ45 connec-

tor pin-out was manufactured according to ANSI/TIA-568A (Figure 7 in [31]), whereas

the J1962 connectors conform, respectively, to Option 1 and Option 2. Deviating from

ISO 13400-4, the Ethernet activation line was hardwired with an inline resistor inside the

J1962 connector to Pin 16 (battery voltage). The resistor has a resistance of 500 Ω in accor-

dance with ISO13400-3 (Table 2 in [32]). A schematic drawing of both cables is shown in

Figure 1. This cable allows for the direct connection of a laptop to the VUS.

1 2

Rx+

3 4 5 6 7 8

9 10

Rx-

11

Tx+

12 TX-13 14 15 16

RJ45

1

1
2
3
4
5
6
7
8

50
0 

Ω

1 2

Rx+

3 4 5 6 7 8

9 10

Rx-

11

Tx+

12 TX-13 14 15 16

RJ45

1

1
2
3
4
5
6
7
8

50
0 

Ω

ISO 13400-4
Option A

ISO 13400-4
Option B

J1962 / ISO 15031-3 
OBD-II connector "type A"

J1962 / ISO 15031-3 
OBD-II connector "type A"

8

8

Figure 1. Pin-out for Option 1 (top) and Option 2 (bottom) looms.

2.2.2. Discover Logical Address

In order to use an UDSonIP diagnostic session, the DoIP connection as the underlying

transport medium has to be established. This requires the following information: the

Internet Protocol (IP) address of the VUS, the logical address of the targeted participant, in

this case the Gateway of the VUS, and the logical address of the laptop.

Figure 2 shows the sequence of events that are automatically triggered by establishing

a physical connection using the cable specified in Section 2.2.1 between the VUS and

a laptop. Initially, both entities have to detect the presence of the physical link, after which

both entities configure their network interfaces independently of each other. After some

time, the VUS will broadcast three times a so-called Vehicle Announcement Message. This

message contains the Vehicle Identification Number (VIN) and the logical address of the

Gateway (Table 4 in [33]); the IP address of the Gateway can be extracted from the Ethernet
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header of the broadcast message. The logical address is 16 bits wide and uniquely identifies

an DoIP entity connected to the network. The range of logical addresses is divided into

13 regions, defining the expected functionality of the participant. The address space from

which we may choose the logical address for the laptop starts at 0x0E80 and ends at

0x0EFF. It is reserved for external vehicle-manufacturer/aftermarket-enhanced diagnostic

test equipment (Table 13 in [33]). In order to discover which addresses are available for

use by the laptop, a UDS Diagnostic Session is initiated with the Gateway with alternating

logical addresses until the complete range has been covered. All addresses that result in

the successful creation of a diagnostic session can subsequently be used.

physical link detected ()

Client
DoIP node

DoIP gateway/
DoIP node

physical link detected ()

configure IP address ()

configure IP address ()

Vehicle announcement message ()

Vehicle announcement message ()

Vehicle announcement message ()

Figure 2. Vehicle announcement and identification sequence of DoIP (Figure 11 in [33]).

2.2.3. Discover Servers

In order to discover which other DoIP-enabled entities are participating in the network,

a similar approach to that described in Section 2.2.2 is chosen. Using one of the available

logical addresses as the source address for the laptop, the target logical address is alternated

until the now complete 16-bit range is covered. All target logical addresses that result in

the successful creation of a diagnostic session are addresses of the ECUs of the VUS.

2.2.4. Discover DIDs per Server

UDS defines a wide range of functions and services for communication with ECUs.

For our method, only the ReadDataByIdentifier service is needed, which has the Service

Identifier (SID) 0x22. This service is used to request parameter values identified by

a 16-bit data identifier (DID).

As can be seen in Table 1, a ReadDataByIdentifier request message contains one or

multiple DIDs; the upper limit n is defined by the OEM of the ECU. When an ECU receives

a ReadDataByIdentifier request, it is expected to reply with either a positive response, which

contains the data associated with DID, or a negative response.

The structure of a positive response message is shown in Table 2; the first byte identi-

fies the message as a positive response for a ReadDataByIdentifier request, and thereafter

follows the requested data. As can be seen, the payload is structured in a repeating pat-

tern of a dataIdentifier followed by an arbitrary but constant (for this DID) number of

associated dataRecord bytes.

Negative responses are identified by codes and give insight into the reason why the

ECU rejected the request. Two of the five different responses are of particular interest.
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Table 1. ReadDataByIdentifier request message definition (Table 186 in [26]).

Byte Parameter Name Byte Value

#1 ReadDataByIdentifier Request SID 2216

#2
dataIdentifier[]#1 = [

0016 to FF16byte#1 (MSB)
#3 byte#2 ] 0016 to FF16

...

... ...

#n − 1
dataIdentifier[]#m = [

0016 to FF16byte#1 (MSB)
#n byte#2 ] 0016 to FF16

Table 2. ReadDataByIdentifier positive response message definition (Table 188 in [26]).

Byte Parameter Name Byte Value

#1 ReadDataByIdentifier Response SID 6216

#2
dataIdentifier[]#1 = [ 0016 to FF16

byte#1 (MSB)
#3 byte#2 ] 0016 to FF16

#4
dataRecord[]#1 = [ 0016 to FF16

data#1 . . .
#(k − 1) + 4 data#k ] 0016 to FF16

...

... ...

#n-(o-1)-2
dataIdentifier[]#m = [ 0016 to FF16

byte#1 (MSB)
#n-(o-1)-1 byte#2 ] 0016 to FF16

#n-(o-1)
dataRecord[]#m = [ 0016 to FF16

data#1 . . .
#n data#o ] 0016 to FF16

The first negative response code of interest is 3116: requestOutOfRange. This response

can be triggered by three conditions (Table 190 in [26]):

1. None of the requested DID values are supported by the device.

2. None of the requested DIDs are supported in the current session.

3. The requested dynamic defined DID has not been assigned yet.

The other negative response code is 1416: responseTooLong. This response is sent if the

total length of the response message exceeds the limit of the underlying transport protocol,

e.g., when multiple DIDs are requested in a single request (Table 190 in [26]).

In order to determine which DID values are associated with a value, every possible

DID has to be tested for every ECU. This can be realized using Algorithm 1.

A more efficient approach is shown in Algorithm 2. This improved version takes

advantage of the requestOutOfRange and responseTooLong behaviour. When requesting

multiple DIDs at once, the server will either reply with a requestOutOfRange if all DIDs have

no associated value. If a positive response is received, at least one DID has an associated

value. And if a responseTooLong is received, multiple DIDs have an associated value. In

these two cases, it is necessary to check every DID of the original request via separate

requests. This is necessary as the length of the data values is unknown at this time, which
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makes it impossible to dissect the originally received positive response. Therefore, the

length of the data is saved in both cases for future use.

Algorithm 1 Sequential discovery of DIDs

Require: ECUs ▷ array of all discovered ECUs
while i < len(ECUs) do

k← 0
while k ≤ 0xFFFF do

response = ReadDataByIdentifier(ECUs[i],[k])
if response is positive then

ECUs[i].dids.append(k, len(response.value)
else if response is requestOutOfRange then

pass
end if
k← k + 1

end while
i← i + 1

end while

Algorithm 2 Parallel discovery of DIDs

Require: ECUs ▷ array of all discovered ECUs
Require: n ≥ 1 ▷ number of DIDs requested

RDBI ≡ ReadDataByIdenti f ier
while i < len(ECUs) do

k← 0
while k < 0xFFFF do

if k + n > 0xFFFF then
n← 0xFFFF− k

end if
dids← [k,k + 1,. . . ,k + n]
response = RDBI(ECUs[i],dids)
if response is positive then

j← 1
while j ≤ n do

response = RDBI(ECUs[i],[k + j])
if response is positive then

ECUs[i].dids.append(k + j, len(response.value)
end if
j = j + 1

end while
ECUs[i].dids.append(k, len(response.value)

else if response is responseTooLong then
j← 1
while j ≤ n do

response = RDBI(ECUs[i],[k + j])
if response is positive then

ECUs[i].dids.append(k + j, len(response.value)
end if
j = j + 1

end while
else if response is requestOutOfRange then

pass
end if
k← k + n

end while
i← i + 1

end while
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2.3. Experiments for Data Collection

The results of the signal discovery pipeline provide a complete set of control devices

and their reachable address space. To identify the best-performing data identifier for each

targeted signal, multiple experiments are carried out.

The underlying concept of all experiments is to first perform two measurements at

distinct observation points and filter out all data identifiers that remain constant for both ex-

periments. This is carried out to significantly reduce the duration of each data collection, as

most of the DIDs stay constant for all measurements within an experiment. For the remain-

ing non-constant DIDs, additional measurements are performed to improve the availability

of data for signal identification. We will refer to this strategy as the pre-filtering strategy.

Another important part of the data collection strategy is to collect data for the same

ground truth at different times and avoid collecting consecutive measurements for the

same condition. This is only necessary for categorical signals—i.e., brake pedal activa-

tion, chassis level, and selected gear, in general signals that have continuous physical

representation—but can optionally be applied to any experiment. This is due to the fact

that continuous signals, i.e., vehicle speed, steering wheel angle, accelerator pedal position,

and charging power, are processed using regression learning, which is less vulnerable to

a structured data collection approach. For categorical signals, machine learning is used dur-

ing data identification, where this strategy is essential to avoid the model learning unrelated

or misleading features caused by structured or time-correlated data collection [34].

For example, rather than collecting five measurements in gear Park (P) consecutively,

one or two measurements are performed in P, followed by measurements in different gears,

before returning to collect additional measurements in P. The reason for this strategy is

that otherwise the Neural Network (NN) used (see Section 2.4.2) is potentially able to map

an unrelated signal (e.g., DID representing state of charge (SOC)) to the ground truth. In

other words, without the alternating pattern, unrelated DIDs might feature a structure,

correlating to the different measurements without containing meaningful information for

this task, e.g., gear signal identification.

As an example, the order of the measurements for the gear experiments (without

distinguishing between the two different driving gears) is shown in Table 3. Overall,

eight measurements per gear were collected. Instead of collecting eight consecutive mea-

surements per DID for each gear, the measurements were divided into three separate groups

(first one measurement, then three, and finally four). Diversifying the measurements makes

it more challenging for an NN to learn unrelated signals (e.g., SOC), thereby facilitating the

identification of correlated signals. If this strategy was not applied in this example, a DID

containing the SOC would correlate to the selected gear without actual causation, e.g., high

SOC for first measured gear to low SOC for last measured gear. This strategy was similarly

applied in the data collection process of the other categorical signals, such as the brake

pedal experiment. We will refer to this strategy as the alternating measurements strategy.

Table 3. Number of measurements per DID, distributed across gears and time steps.

Gear
Time Step

1 2 3 4 5 6 7 8 9 10 11 12

P 1 3 4
R 1 3 4
N 1 3 4
D 1 3 4
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2.3.1. Brake Pedal Experiment

The goal of the brake pedal experiment is to discover DIDs that indicate whether the

brake pedal is activated or not (see [35]). The degree to which the brake pedal is pressed

is not relevant. For this experiment, each DID is read ten times with the brake pedal not

activated, and ten times with it activated. Since it is a categorical signal, the strategy of

alternating measurements is applied. For both types of measurements, a person is seated

in the stationary vehicle and either pressing or not pressing the brake pedal, ensuring

similar conditions for both sets of measurements. Overall, the experiment consists of

20 measurements under two different conditions.

2.3.2. Chassis Level Experiment

Conveniently, the vehicle under study includes options in the control panel (Porsche

Communication Management) for manually changing the ride height to four different

levels: Lift, Normal, Lowered, and Low. To find a DID that corresponds well to the chassis

level, each option is chosen, and eight measurements per DID are performed. As with the

brake pedal experiment, the alternating measurements strategy is used. This results in

a total of 32 measurements per signal. For this experiment, the vehicle remains stationary

during all measurements.

2.3.3. Steering Wheel Angle Experiment

This experiment aims to identify DIDs corresponding to the steering wheel angle.

While the vehicle remains stationary, measurements for seven different steering wheel

angles are taken: 0°, ±90°, ±180°, and ±360°. The steering wheel is manually turned to the

desired position before each measurement. For each steering wheel angle, five measure-

ments are taken, resulting in a total of 35 measurements per DID.

2.3.4. Vehicle Speed Experiment

The vehicle speed experiment is one of the more time-consuming experiments. This

makes signal filtering at an early stage all the more important. A single measurement

of all available DIDs is performed at a constant speed of 10 km/h, and another at

100 km/h. Signals that remain constant across both conditions are filtered out to opti-

mize the succeeding data collection.

A large gap between the two measured speeds was chosen to avoid mistakenly

filtering out signals that change between the two driving gears of the vehicle under

study. This also allows the collected data to be reused for other experiments, such as

the gear experiment. Therefore, the selected gear throughout all the measurements in this

experiment is Drive (D).

For the pre-filtered set of DIDs, data is collected for 12 different speeds from 10 km/h

to 120 km/h, with 10 km/h increments. At each speed, five measurements per DID are

taken, resulting in a total of 60 measurements per DID. Since the vehicle speed is a linear

signal, the alternating measurements strategy is not applied.

During this and the following experiments, whenever the vehicle is not stationary,

a chassis dynamometer (Renk GmbH, Augsburg, Germany) is used. While not essential for

the experiments, it contributes to a repeatable, predictable, and safe environment. Another

option would be to collect the data at different speeds on a highway.

2.3.5. Gear Experiment

The purpose of the gear experiment is to identify a DID that is able to differentiate

not only between the different selectable gears, i.e., Park (P), Neutral (N), Reverse (R), and

Drive (D), but also between the two different driving gears of the vehicle under study.
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Eight measurements per DID were taken from the stationary vehicle for all four selectable

gears. This collected data is used to identify a signal that differentiates well between

the four selectable gears. As explained in the beginning of Section 2.3, the alternating

measurements strategy is applied. The order of the performed measurements is shown in

Table 3.

As described in Section 2.1, the VUS is equipped with a two-speed automatic transmis-

sion and thus two different driving gears. These driving gears are referred to as Drive 1 (D1)

for low-to-moderate-speed conditions, and Drive 2 (D2) for moderate-to-high-speed opera-

tion. The driving gears cannot be selected manually but are instead shifted automatically

by the VUS when operating in the selected drive mode D.

Therefore, another data collection is created by removing the measurements for

the gear D from this data collection and replacing it with two different automatically

crafted datasets for the gears D1 and D2. These two datasets are created using data from

Section 2.3.4: For the D1 dataset, two measurements per speed are randomly taken for the

speeds 10 km/h, 20 km/h, 30 km/h, and 40 km/h, resulting in eight measurements per

DID for this gear. Accordingly, the D2 dataset is crafted for the speeds 90 km/h, 100 km/h,

110 km/h, and 120 km/h. In the reference study [27], it has been shown that for these

speeds, the vehicle is in the desired driving gear.

This automatically crafted dataset is then used to identify DIDs that are also able to

differentiate between the two driving gears. Additional measurements were taken to verify

the identified DIDs in Section 3.3 by measuring data for negative speeds in gear R and both

positive and negative speeds for gear N.

The resulting two datasets contain 32 values per DID for the four selectable gears, and

40 values per DID for the dataset with the two driving gears.

2.3.6. Accelerator Pedal Position Experiment

In contrast to the brake pedal experiment, the goal of the accelerator pedal position

experiment is not only a binary detection, but the identification of a continuous signal

(see [27]). The setup of this experiment is challenging, as it is difficult to provide a constant

ground truth value manually.

One option would be the use of a pedal robot, providing constant pressure on the

accelerator pedal. Even though a pedal robot was available, its use was deliberately avoided

because the goal is a pipeline that is reproducible without requiring specialized equipment.

Therefore, throughout the data collection for this experiment, the vehicle is kept at

a constant speed of 10 km/h, in gear D, with one person seated in the vehicle. Measure-

ments for eleven different accelerator pedal positions are taken. The accelerator pedal

position is maintained by applying a constant tractive force, which can be read from the

chassis dynamometer. The chassis dynamometer is in speed mode to keep the vehicle

speed constant. Measurements were performed for tractive force values ranging from 2 kN

to 10 kN, with 1 kN increments. In addition, measurements were taken at the neutral

position (0 kN) and with the accelerator pedal fully depressed. Measurements at 1 kN were

skipped, as maintaining this position was deemed unfeasible. For each accelerator pedal

position, two measurements were taken, resulting in 22 values per DID.

2.3.7. Charging Experiment

The objective of this experiment is to identify parameters associated with the perfor-

mance and behavior of the battery system in general. The VUS has two charging ports

placed on both sides forward of the front doors. The port located on the left side only

supports alternating current (AC) charging, whereas the other port supports AC and direct

current (DC) charging. In order to gather representative data for both charging methods,
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two different experiments were conducted. For all charging experiments, the battery of the

VUS must be sufficiently empty to support both the required charging power and time.

The AC charging experiments were conducted using a Pulsares SimpleBox (PULSARES

GmbH, Nienstädt, Germany), a wall-mounted charging station with a so-called SMART

control input, which allows the user to limit the maximum charging power. This input can

be stimulated either via a pulse-width modulation (PWM) signal or by applying a constant

voltage in the range of 0 and 3 V. This flexible input allows for precise adjustment of the

charging power ([36] p. 26).

For the experiments, an ESP32-WROOM-32 (Espressif, Shanghai, China) was pro-

grammed to generate the required PWM signal. The underlying function given by the

manufacturer for calculating the resulting amperage per phase is as follows [36]:

Duty[%] = 3.077×Amps− 8.462 (1)

The resulting characteristic curve is shown in Figure 3. In total, 5 AC charging

experiments were conducted with the PWM duty cycle increasing by 10% starting at 11%,

with 5 samples per experiment.

Duty-Cycle in %

32

Phase Current in A

6

10 90

Figure 3. SMART PWM characteristic curve, with amperage per phase over duty cycle (Figure 13

in [36]).

The DC charging experiment was carried out using a 100 kW DC Charger (JEMA

Energy SA, Lasarte-Oria, Spain). This charger offers an application programming interface

(API) that logs detailed information about the charging process. Apart from intuitive

values like charging voltage and power, the charger also exposes data that results from the

communication between the charger and the car, most importantly, the SOC. As shown in

(Figure 12 [27]), the charging power of VUS drops with increasing SOC, which automatically

causes a change in the signals of interest, allowing for correlation with the signals provided

by the charger.

2.4. Data Identification

The collection of data in different experiments described in Section 2.3 results in

multiple datasets per experiment. Even with the pre-filtering strategy applied, the datasets

still contain measurements for hundreds of different DIDs. Only a fraction of these DIDs

contain valuable information related to the target signal. The goal of the data identification

process is to detect the DIDs from which the desired information can be read best for each

of the targeted signals.

Before the actual interpretation of raw measurements can begin, it is necessary to

combine the individual measurements into a single file. During the data collection pipeline,

for each distinct ground truth value, e.g., 10 km/h or 20 km/h, an experiment file is

created. These experiment files contain the raw measurements for the specific ground

truth value. Ground truth values are added as external measurements to each experiment
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file, such that each measurement can be associated with the correct ground truth value.

Then, all experiment files from a single experiment are concatenated into one combined

file. These combined experiment files contain all the raw measurements, along with the

associated ground truth values. With that first pre-processing step, the data identification

process can begin.

2.4.1. Regression Learning

ISO 14229-1 defines a set of functions that vehicle manufacturers can use to encode the

byte values behind data identifiers. Nine of the ten defined functions can be transformed

into regular linear functions (C.6 in [26]). Furthermore, ref. [27] showed regular usage of

linear functions for converting DID values to required measurement values. The challenge

is to find a transfer function that optimizes the conversion from DID values to the measured

ground truth values. Those DIDs, which, after conversion, show minimal deviation from

the ground truth values, are most likely encoding the required measurement. To define

a linear function, two unknowns have to be determined: slope and offset. By experiment

design, more than two value and ground truth pairs exist for every given DID, over-

determining the equation system. Furthermore, this also guarantees that only DIDs that

correlate with the ground truth will show minimal error. Deriving the two unknowns can

mathematically be expressed as a linear least-squares optimization problem as denoted in

Equation (2) [37]. The dimensions of A and b directly follow from the number of samples

available from the experiment.

min
x∈Rn

∥Ax− b∥2, With A =













A11 A12

A21 A22
...

...

An1 An2













, b =













b1

b2
...

bn













, x =

[

x1

x2

]

(2)

Every line of A and b defines a linear equation in which An,1 holds the DID value and

b holds the measured ground truth value. By definition An,2 = 1. The values x1 and x2

are the slope and offset, which are being optimized. Up to this point, the DID values are

byte arrays of arbitrary length. In order to transform them into useful numerical numbers,

three important pieces of information are missing.

1. The byte order is unknown. For a given 16-bit value, it can be interpreted in either

little-endian or big-endian format. Similarly, for 8-bit values, it is unknown if the most

or least significant bit comes first.

2. The correct encoding of the values is unknown. A given 16-bit value could, for

example, be an unsigned integer, a signed integer, or an IEEE 754 float.

3. The partition of the values is unknown. Manufacturers sometimes pack multiple

values into a single DID value. A DID value with a total length of 48 bits could

potentially encode four 8-bit values followed by a 16-bit value.

This makes it necessary to calculate the error for all permutations of encodings, byte

orders, and partitions of all DID values. In the analysis, the following encodings are

considered in both byte/bit orders:

1. 8-bit: u_int 8, int 8.

2. 16-bit: u_int 16, int 16, float 16.

3. 32-bit: u_int 32, int 32, float 32.

4. 64-bit: u_int 64, int 64, float 64.
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2.4.2. Machine Learning

While regression learning works well for identifying continuous signals, it has major

limitations when applied to categorical data. The problem is that categories might not have

a natural numeric relationship. For example, for the gear experiment, there is probably

no mapping from the different gears to natural numbers that correctly represents the rela-

tionship. For other categorical signals, mapping the categories to numerical values might

be possible (e.g., chassis level), since the categories are based on a continuous variable,

such as the ride height. Regression learning is not able to split data into discrete classes,

and its output might predict invalid values, e.g., a predicted gear value of 2.5. There-

fore, a second data identification strategy based on machine learning was introduced to

address these limitations.

Machine learning offers several benefits for categorical signal identification. To name

a few, machine learning models treat categories as distinct classes and do not make assump-

tions about numeric relationships. They also support multi-class classification. Last but not

least, they can learn complex, non-linear patterns in high-dimensional feature spaces.

The goal is to identify DIDs that encode categorical signals, i.e., brake pedal activation,

chassis level, and gear selection. To achieve this, the first step is to load the data.

The data is loaded from the previously created combined experiment file for a specific

experiment (e.g., gear experiment) into a Pandas DataFrame. The columns of the DataFrame

are ‘Server ID’, ‘DID’, and ‘Ground Truth Value’, followed by the data columns. While the

columns ‘Server ID’ and ‘DID’ identify the DID, the column ‘Ground Truth Value’ contains

the categorical ground truth value, for the gears, e.g., ‘P’ and for brake pedal activation,

‘True’ or ‘False’). The number of data columns depends on the number of measurements

per ground truth value. For example, in the gear experiment, eight measurements per DID

were performed, and thus the DataFrame includes eight value columns.

Thus, the number of columns ncolumns and the number of rows nrows in the DataFrame

can be expressed as

ncolumns = 3 + nsamples and nrows = nDIDs × nclasses, (3)

where nsamples is the number of measurement values per class and per DID, nDIDs is the

number of DIDs, and nclasses is the number of ground truth classes.

After loading, the data is split into a training set and a validation set. During data

collection, the distribution of measurements is controlled to ensure an equal number of

data points for each ground truth value. To maintain this balance, the data is split row-

wise. First, the data in each row is shuffled. Next, at least 75% of the data is added

to the training set. The remaining data is added to the validation set. As a result, the

same number of data points per ground truth value and per DID is available in both sets.

Additionally, the structure of the data is slightly modified during the split. Each row now

corresponds to a measurement value. The columns are ‘Server ID’, ‘DID’, ‘Ground Truth

Value’, and a single ‘Value’ column.

Following the splitting of the data, further pre-processing steps are needed for both

the training and the validation sets. To avoid redundancy, pre-processing is explained only

for the training set, but the exact same process is performed for the validation set. The

DataFrame containing the training set is split by DID into multiple DataFrames. These

DataFrames are stored in a dictionary, indexed by a tuple of ‘Server ID’ and ‘DID’. At

this point, the ‘Value’ column still contains raw data in the form of byte lists. This value

column is expanded into multiple value columns. The number of value columns after

expansion depends on the length of the DID and is determined individually for each DID.

The last pre-processing step is One-Hot Encoding. This technique transforms the ‘Ground

Truth Value’ column into multiple binary columns, one for each class. This converts the
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categorical labels into a binary indicator matrix, where each class has its own column [38].

The results of the loading and pre-processing steps are two dictionaries of DataFrames

ready for the training process.

The data is split into individual DataFrames per DID to enable independent training for

each. The overall goal is to identify a single DID per experiment that contains the complete

information about the signal, not a combination of multiple DIDs. This is achieved by

iterating through all the DIDs of an experiment and training a separate instance of the same

NN architecture for each one. To reduce training time and to avoid flawed results, a final

filtering step is applied. All DIDs that are ambiguous—i.e., they have overlapping values

between classes—are removed. For example, if a DID has the same value in ‘N’ and in ‘P’,

it is not a suitable candidate. The training process uses a fully connected NN consisting

of one hidden layer with 16 neurons. The number of neurons on the input layer depends

on the length of the individual DID, i.e., one neuron per byte. For the output layer, the

number of neurons corresponds to the number of classes of the experiment, e.g., two for

the brake pedal activation experiment. Each DID is trained individually on this shared NN

architecture with a batch size of 64 for 100 epochs. After training all DIDs (without the

previously removed ones) and storing each model’s metrics in a dictionary, the evaluation

process can begin.

The performance metrics used for evaluation are Accuracy, Precision, Recall, and

F1-Score. These are standard machine learning metrics used to evaluate classification

models. All of them are derived from the confusion matrix (see Table 4), which is particu-

larly useful in binary classification tasks. In multi-class classification, the confusion matrix

remains useful when evaluated on a per-class basis.

Table 4. Confusion matrix for classification tasks in machine learning.

Actual
Predicted

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negativee (TN)

For example, for the gear experiment and class gear P, the confusion matrix values are

defined as follows:

• TP: Predicted P when true class is P.

• FP: Predicted P but true class is N, R, or D.

• FN: Predicted N, R, or D but true class is P.

• TN: Predicted N, R, or D and true class is N, R, or D.

The metrics Accuracy, Precision, Recall, and F1-Score are calculated by these values:

faccuracy =
TP + TN

TP + TN + FP + FN
, (4)

fprecision =
TP

TP + FP
, (5)

frecall =
TP

TP + FN
, (6)

fF1 =
2× fprecision × frecall

fprecision + frecall
. (7)

In summary, Accuracy is the rate of total correct predictions out of all predictions

made, Precision is the rate of correctly predicting that class out of all predictions made for
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that class, Recall is the rate of correct class predictions out of all samples of this class, and

F1-Score combines Precision and Recall into a single metric [39].

Since each of these metrics captures a different aspect of classification performance,

they are combined into a single weighted score, enabling consistent ranking across all DIDs:

fScore = 0.4× fAccuracy + 0.2× fPrecision + 0.2× fRecall + 0.2× fF1. (8)

Accuracy is weighted twice as heavily as the other metrics, which are weighted

equally, since the classes are balanced and correctness is the most important factor. Also, it

overcomes the issue of Precision and Recall, being already included in the F1-Score, which

would otherwise be effectively double-counted. The DIDs are sorted by their performance

based on this score function. If a clear top candidate is identified, the objective of the

pipeline is considered fulfilled. Otherwise, the best scoring DIDs are kept for further data

collection. A threshold of 0.7 is defined as the minimum score for selection, as it balances

model confidence and flexibility. This ensures that only high-performing DIDs are retained,

resulting in a reduced duration of additional data collection, avoiding the exclusion of

potentially valuable candidates. For the selected top candidates, additional data collection

experiments are performed, and the new data is fed back into the individually trained

instances of the same NN architecture to enhance training and identify a single DID.

Although it is possible to apply the machine learning pipeline to continuous signals, it

has significant limitations. Continuous signals often contain fluctuations and sensor noise.

Machine learning models tend to overfit to such noisy patterns, especially given that the

datasets are very small from a machine learning perspective. In addition, machine learning

might identify DIDs that are merely correlated with the target signal, rather than the true

source. Since regression learning provides a more direct interpretation of continuous

signals, the machine learning approach was not applied to continuous signals.

3. Results, Evaluation, and Discussion

After describing the VUS, the hardware and software setup, and the experimental

methods, we now turn to the results of the proposed pipelines. We begin with the results

of the vehicle discovery pipeline and continue with the data identification pipelines. As

explained in Section 2.4, this process is split into two parts. We first present the results for

continuous linear signals and conclude with those for categorical signals.

3.1. Results of Discovery

The overall goal of the discovery pipeline is to identify all reachable ECUs, ser-

vices, and DIDs within the vehicle. The results of this pipeline are a prerequisite for

signal identification.

3.1.1. Connection and Communication Establishment

The initial DoIP connection via OBD-II and Ethernet proved to be 100% reliable.

Since the OBD-II connector must be located under the driver’s side dashboard, it is easily

accessible. As a result, physically connecting the vehicle to the host computer takes only

a few seconds.

For the initial connection, the vehicle announcement message is necessary. There

were no cases in which the vehicle failed to send this message. It can take a few seconds

until the message is sent by the vehicle and received by the laptop, but the delay never

exceeded ten seconds.

The vehicle may change the Gateway ECU’s IP address from day to day, making re-

initialization necessary. However, due to the fast connection setup, this is not a significant

issue. This behavior can also be prevented by routing the connection through a Dynamic
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Host Configuration Protocol (DHCP) router. The router can assign and persist logical

addresses over multiple days, even if both the vehicle and the laptop are disconnected.

3.1.2. Logical Address Discovery Results

The logical addresses are necessary for the server discovery. The vehicle announcement

message already provides information about the logical address of the Gateway ECU and,

as described earlier, the IP address of the Gateway ECU. The actual discovery process here

is limited to discovering usable addresses for the laptop.

For the VUS, we were able to discover five different addresses for potential use by the

laptop. The results are shown in Table 5.

Table 5. Discovered arbitration ID pairs.

Target Logical Address Source Logical Address

0x4010 0x0E80
0x4010 0x0E81
0x4010 0x0E82
0x4010 0x0E83
0x4010 0x0E84

In this table, the target logical address corresponds to the Gateway ECU, while the

source logical addresses represent the different values that can be assigned to the lap-

top during communication. Since the addresses range from 0x0E80 to 0x0EFF, which is

relatively small, the discovery completes in approximately 2 min.

The logical address discovery proved to be stable and reliable. Multiple runs from

different laptops resulted in the same addresses. Only the Gateway ECU’s IP address will

change for different laptops. Therefore, it is stored separately from the remaining vehicle

data in a configuration file.

Discovery time could be reduced by stopping after the first valid laptop address is

found, since for the server discovery, only one pair of identifiers (IDs) is needed. In our

case, we would find a candidate with the test of the first address (0x0E80). However, due

to the small duration compared to the overall pipeline, this optimization was omitted

to ensure completeness.

3.1.3. Server Discovery Results

After retrieving the logical addresses of the Gateway ECU and establishing communi-

cation, the goal of the server discovery is to identify the addresses of all other reachable

ECUs. These ECUs are identified as servers within the BEV’s communication network.

As described in Section 2.2.3, this is achieved by scanning the logical address space and

considering successful session establishments as reachable ECUs.

In total, the server discovery (identifying reachable ECUs) for the VUS took 9 h 10 min.

This includes the discovery of the complete set of reachable ECUs by probing each possible

logical address. This approach guarantees the completeness of the server discovery process.

For the VUS, 41 ECUs were discovered. Table A1 shows the complete list of dis-

covered ECUs for the VUS. The contained information about spare part number and

software version for each ECU is retrieved by requesting the specific DIDs as defined in

ISO 14229-1 (Table C.1 in [26]) (vehicleManufacturerSparePartNumberDataIdentifier (0xF187)

and vehicleManufacturerECUSoftwareVersionNumberDataIdentifier (0xF189)).

Multiple runs of the server discovery consistently identified all 41 ECUs. The

discovery time across different runs consistently ranged between 9 h 05 min and

9 h 15 min for the VUS.
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The presented approach is brute-forcing the entire address space (0x0000 to 0xFFFF,

65,536 potential addresses), thus leaving room for optimization. ISO 13400-2 specifies the

range and meaning of different logical address values used in DoIP (Table 13 in [33]). This

restricts the possible address space for Vehicle Manufacturer (VM)-specific servers (ECUs

in the vehicle) to the following ranges:

• 0x0001 to 0x0DFF (3583 addresses).

• 0x1000 to 0x7FFF (28,672 addresses).

This would reduce the number of potential addresses to 32,255. In fact, the discovered

ECUs addresses for the VUS are all located in these defined sections. Limiting the discovery

to the ISO-defined VM-reserved address space would halve the runtime to approximately

4 h 35 min. To ensure maximum completeness, we chose not to restrict the address space

and instead performed the discovery across the entire logical address range.

3.1.4. DID Discovery Results

The previously discovered list of reachable ECUs enables the actual discovery of

used DIDs, needed for data identification. For each ECU, the ReadDataByIdentifier UDS

service is used to sequentially request all possible DID values and store the ones with

a positive response (see Section 2.2.4).

The results of the DID discovery for the VUS are displayed in Table A1. The number of

reachable DIDs varies significantly between different ECUs, ranging from low double-digit

numbers to medium three-digit numbers. The discovery time is also subject to strong fluc-

tuations, varying from several minutes to several hours. In total, 6280 reachable DIDs were

discovered, which took approximately 19 h (excluding the time for the server discovery).

In Section 2.2.4, we also introduced a second algorithm for DID discovery, enabling

parallel requesting of DIDs (see Algorithm 2). The algorithm supports requesting an in

theory unlimited number of DIDs from the same ECU in parallel, but for the VUS, the

number of DIDs is limited to eight, as allowed by ISO 14229-1 (Section 11.2 in [26]). We

performed complete DID discovery runs using batches of eight (8-Batch) and four (4-Batch),

meaning eight or four DIDs were requested in parallel.

Algorithm 2 was introduced to reduce the overall runtime of the DID discovery. For

the 8-Batch, the runtime was reduced to 5 h 8 min. However, it was not able to discover the

complete set of DIDs per ECU. While working correctly for most ECUs, it was only able

to discover 6138 DIDs in total, missing 142 DIDs. For example, the number of discovered

DIDs for ECU 0x4010 was only 353 instead of the expected 463. This behavior could not be

prevented for the affected ECUs, resulting in dismissal of the 8-Batch. However, the 4-Batch

was able to discover the complete set of DIDs, while reducing the runtime to 7 h 18 min,

reducing the discovery time by 61.8%. Therefore, the use of the parallel method using

batches of four is recommended, balancing speed and quality of outcome. The detailed

performance of the parallel 4-Batch method per ECU is also shown in Table A1.

For the ECU with the logical address 0x4014, we were unable to complete the DID

discovery. Even with application of the 8-Batch, the complete run time of the DID discovery

for that ECU was estimated to take 211 h and thus deemed unfeasible. This occurs because

the ECU is not required to respond, causing each request to end in a timeout. Despite the

missing discovery for that server, we were not limited, as the required signals were also

available through other ECUs, demonstrating functional redundancy within the system.

After presenting the discovery results, two optimization strategies are considered.

With the parallel discovery algorithm, we have already presented a successful optimiza-

tion. An additional opportunity for improvement is the order of the pipelines. It is not

necessary to complete the server discovery before starting the DID discovery. The DID dis-

covery process for an ECU can start as soon as its logical address is discovered. Therefore,
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the server discovery could be interrupted after each newly discovered ECU by directly

discovering all DIDs on this ECU. This enables the opportunity to progress to the data

collection part with incomplete, but maybe sufficiently large, sets of ECUs and DIDs at the

expense of completeness.

Another proposal for optimization is to limit the probed DIDs for each ECUs to the

ranges defined in ISO 14229-1 (Table C.1 in [26]). Depending on the performed experiment,

only specific ranges could be probed. For example, the ranges of VM-specific DIDs that

were used are defined as follows:

• 0x0100 to 0xA5FF (42,240 parameters).

• 0xA800 to 0xACFF (1280 parameters).

• 0xB000 to 0xB1FF (512 parameters).

• 0xC000 to 0xC2FF (768 parameters).

• 0xCF00 to 0xEFFF (8448 parameters).

• 0xF010 to 0xF0FF (240 parameters).

In total, there are 53,488 parameters in these ranges. By reducing the number of

parameters to probe by 12,048, an expected performance gain of approximately 18.4% could

be achieved. Although this is difficult to estimate, since the DID discovery pace is not

constant during the discovery in one ECU. Prioritizing completeness over efficiency, we

decided against limiting the probed parameters.

3.2. Results of Linear Signals

As explained in Section 2.4.1, the continuous signals can be analyzed based on

regression learning. The following sections present and analyze the results of the

linear signal experiments.

3.2.1. Steering Wheel Angle Experiment Results

For this experiment, the pre-filtering strategy was not applied, resulting in a runtime

of 5 h 41 min. Of the 6263 known DIDs, only 700 remained non-constant. With the pre-

filtering strategy, a theoretical time saving of approximately 62% could have been achieved.

Figure 4 shows this experiment’s results. The invisible lines (ground truth and best match)

do exactly match the original signal.
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Figure 4. Discovered steering wheel angle signals and ground truth signal.

In total, two DIDs showed very good performance and therefore very few errors. The

best signal DID 0x2B29 is located on the ABS Pump (0x4013); the other signal DID 0x1F0F

is located on the Power Steering Module (0x4012) and is the original signal that was used



World Electr. Veh. J. 2025, 16, 384 19 of 26

in [27]. The two discovered signals in the figure perfectly match the ground truth despite

the fact that the steering wheel was manually placed into the intended positions.

3.2.2. Vehicle Speed Experiment Results

Of the known DIDs, only 988 were non-constant over the course of all measurements.

In total, 20 signals have been found that performed equal or better than the signal identified

in [27]. This original signal is located on Body Control (0x408B), which we were able to

rediscover under its DID, 0x100E. The best signal DID, 0x22D2, is located on the Rear Right

Radar Sensor (0x404E). As shown in Figure 5, the overall difference between the two signals

is relatively small, and both match the ground truth very well.
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Figure 5. Discovered vehicle speed signal and ground truth signal.

3.2.3. Accelerator Pedal Position Experiment Results

Of the known DIDs, only 678 were non-constant over the course of all measurements.

In total, four signals with acceptable performance for the accelerator pedal position were

found. Figure 6 shows the second-best signal, which was used in [27].
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Figure 6. Discovered accelerator pedal position signal and ground truth signal.

This signal is located on ABS control (0x4013) and we were able to rediscover it as

well under its original DID, 0x2B2F. The best signal DID, 0xF49A, is located on Thermal

Management (0x4042). The overall difference between the two signals is not visible within

the graph. The deviations from the ground truth are caused by two factors. Firstly, the
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driver has to manually control the pedal, which introduces some noise (Samples 16 and

17). Secondly, the VUS was not able to hold the maximum force for the duration needed

for two measurements (Sample 19). Nevertheless, the approach was able to successfully

determine correct signals.

3.2.4. Charging Experiment Results

For the AC charging measurement suite, a total of 889 signals had to be considered.

For the AC charging power, a perfectly matching signal was found on the charger of the

High-Voltage Battery (0x4040) under DID 0x1DD7, as can be seen in Figure 7.
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Figure 7. Discovered AC charging power signal and ground truth signal.

For the SOC, in total, 104 signals that performed equal or better than the original

signal from [27] have been discovered. The DID was reconfirmed. The majority of

good-performing signals are either located on the Battery Control (0x407B) or on the

Charger of the High-Voltage Battery (0x4044). The overall difference between these signals

is negligible.

3.3. Results of Categorical Signals

For the categorical signals, a different data identification strategy was applied due

to their discrete nature. The neural network architecture and identification process for

these signals were described in Section 2.4.2. Section 2.3 outlined the experimental setup

for these signals, including the application of the pre-filtering and alternating measure-

ments strategies. The categorical signals investigated in this paper are brake pedal acti-

vation, chassis level, and gear selection. The following subsections present the results for

each signal individually.

3.3.1. Brake Pedal Activation Results

The application of the pre-filtering strategy limits the investigated DIDs to 487, reduc-

ing the runtime of the data collection process by 92.2%. The combined training time for

these DIDs is only 17 s. For 46 DIDs, the classification results are perfect with 100% Accu-

racy, Precision, Recall, and F1-Score. This is expected, since classification of binary signals,

like brake pedal activation, is usually less challenging.

The high-performing DIDs are concentrated on Brake Booster (0x403B, 5 DIDs) and

Body Control (0x408B, 7 DIDs), but are also located on other ECUs. To validate the results,

two of the DIDs with perfect scores were selected for further investigation. The selection

criteria for the representative DIDs were a short response length and the semantic relevance
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of the ECU. While some DIDs have a response length of up to thousands of bytes, others

consist of a single byte. The first one is DID 0x0286 on Brake Booster (0x403B) with

a response length of one byte. A byte value of 134 indicates activation, and a value of

135 indicates deactivation. The second one is DID 0x2B3A on ABS Pump (0x4013), where

the single byte returns only the values 0 and 1. While 0 indicates that the brake pedal is

activated, 1 indicates deactivation.

Attempted comparisons with known DIDs from the reference study [27] were unsuc-

cessful, since the used DID 0xFD11 on the Brake Booster is not a DID identified in the

vehicle discovery pipeline. This could be due to access restrictions requiring a different

UDS session (e.g., extended session) or a mapping discrepancy between CAN and DoIP.

Nevertheless, multiple valid DIDs were found, supporting a robust identification

process for the brake pedal activation signal. Not all DIDs were validated, but many likely

represent the same ground truth. Due to the simplicity of the signal, high classification

performance was expected.

3.3.2. Chassis Level Results

For the chassis level signal, 537 DIDs were investigated following the application of

the pre-filtering strategy, resulting in a 91.4% faster data collection process. Training for

these DIDs completes within 45 s. The classification results are perfect for two of the DIDs:

DID 0x4506 and 0x454A on the Chassis Level Control Unit/Suspension (0x4080).

Table 6 displays the full list of measurement and ground truth values for DID 0x454A

with a byte length of five. Byte zero directly encodes the chassis level state: 106 for Lift,

101 for Normal, 98 to 99 for Lowered, and 96 to 97 for Low.

Table 6. Chassis level states and Byte_0 to Byte_4 values for DID 0x2B94 from Chassis

Level/Suspension Control (0x4080).

# GT_Lift GT_Normal GT_Lowered GT_Low Byte_0 Byte_1 Byte_2 Byte_3 Byte_4

1 True False False False 106 219 54 201 175
2 True False False False 106 155 54 205 175
3 True False False False 106 155 54 205 175
4 True False False False 106 155 54 205 175
5 True False False False 106 219 54 201 175
6 True False False False 106 155 54 205 175
7 True False False False 106 155 54 205 175
8 True False False False 106 219 54 201 175
9 False True False False 101 217 230 137 157

10 False True False False 101 218 6 141 158
11 False True False False 101 217 230 137 157
12 False True False False 101 217 230 137 154
13 False True False False 101 217 230 137 154
14 False True False False 101 217 230 137 155
15 False True False False 101 217 230 137 155
16 False True False False 101 217 230 137 157
17 False False True False 98 217 102 89 149
18 False False True False 99 89 86 97 147
19 False False True False 98 217 102 89 149
20 False False True False 98 217 102 89 149
21 False False True False 98 217 102 89 149
22 False False True False 99 89 86 97 147
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Table 6. Cont.

# GT_Lift GT_Normal GT_Lowered GT_Low Byte_0 Byte_1 Byte_2 Byte_3 Byte_4

23 False False True False 98 217 102 89 149
24 False False True False 99 89 86 97 147
25 False False False True 96 216 150 53 136
26 False False False True 96 216 150 53 136
27 False False False True 97 152 230 49 138
28 False False False True 97 152 230 49 138
29 False False False True 96 216 150 53 136
30 False False False True 96 216 150 53 136
31 False False False True 96 216 150 53 136
32 False False False True 97 152 230 49 138

Overall, there are eleven DIDs with strong classification results, each achieving a score

of above 70%. Four of them are located on the Chassis Level Control Unit/Suspension

(0x4080, 4 DIDs), including the previously identified DID 0x2B94 from the reference

study [27] with a byte length of one and a score of 70.8%. The mapping of chassis level

states and byte zero values is shown in Table 7.

Table 7. Chassis level states and Byte_0 values for DID 0x2B94 from Chassis Level Control

Unit/Suspension (0x4080).

# GT_Lift GT_Normal GT_Lowered GT_Low Byte_0

1 True False False False 80
2 False True False False 64
3 False False True False 48
4 False False False True 32

3.3.3. Gear Selection Results

The application of the pre-filtering strategy during the gear selection experiment

reduced the number of investigated DIDs to 646. This reduced the data collection

runtime by 89.6%.

For distinguishing between the four selectable gears, four DIDs with a perfect score

were identified. Three of these DIDs are located on the vehicle control unit, while the other

one is on the body control module. Further investigation of these signals confirms the

correctness of the results: The byte-to-gear mapping for three of them is as follows: P = 5,

R = 6, N = 7, and D = 8. For the last one on the vehicle control unit, the mapping follows

a reverse order: P = 8, R = 7, N = 6, and D = 5.

For additional distinction between the two different driving gears D1 and D2, an addi-

tional dataset was created as described in Section 2.3.5. This time, one DID with a perfect

score was detected, located on the gateway ECU, along with four other signals with a score

of above 90%. The identified byte four mapping for the four selectable gears in the DID with

a perfect score is the following: P = 81, R = 96, N = 112, and D = 128. The differentiation

between D1 and D2 was accomplished by comparing the values in bytes two and three, but

no consistent pattern was identified. Since manual validation was unsuccessful, validating

the results would require additional data.

The reference study [27] did not identify a single signal containing this information.

Instead, two separate signals were used.
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4. Summary and Conclusions

In this study, we present a holistic and practical approach to accessing internal vehicle

communication via the Automotive Ethernet bus system and UDS protocol. This approach

is automated until and including signal identification, with the user ultimately selecting the

signals for further analyses. We applied this methodology to signals of interest according

to [35] with respective experiment design and ground truth data capturing for signal

alignment. The identified signals were evaluated against the applied signals in [27]. This

methodology presents a modular design that can be extended to further signals. With our

tool, a cost-efficient approach is presented that only requires standardized equipment as

described in this study. The major discoveries of this study can be summarized as follows:

• Discovery of potential addresses for signal identification.

A total of 41 potential ECU addresses with reference to their spare part number and

function were identified, and subsequently, 6280 responsive DID addresses were

identified and analyzed. This process has been performed multiple times to guarantee

reproducibility, which was successful for the 4-Batch approach.

• Regression learning for linear signals.

The continuous signals representing physical values were identified with a linear

regression-based learning approach, applying a slope and an offset to the signals to

mirror the ground truth data captured during the experiments.

• Machine learning for categorical signals.

Since categorical signals cannot be decoded linearly, we applied a machine learning

approach to identify the respective categories for the signals of interest.

• Optimization strategies for reduced computational effort.

The primary process of our study is time-consuming. Thus, optimization strate-

gies were applied to reduce computational time. The respective optimization tech-

niques were described in the study, from the parallel discovery algorithm (see

Algorithm 2) to pre-filtering constant signals in the capturing process to collecting

multiple targeted signals in single experiments and ultimately restricting the process

to servers and DID ranges specified in the norm. These helped reduce computational

effort and thus testing time significantly.
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Appendix A. Discovery Results

The results of the ECU and the DID discovery are shown in Table A1. Note that some

ECUs are reachable via different logical addresses with independent sets of DIDs.

Table A1. Overview of all discovered ECUs with hardware and software configuration and DIDs

with discovery times for sequential and parallel (4-Batch) discovery per ECU.

# ECU Address Name
Spare Part Number

DIDs
DID Discovery Time in hh:mm

(Software Version) Sequential Parallel (4-Batch)

1 0x400b Tire Pressure 992907273D (0220) 78 0:11 0:03
2 0x400c Steering Column 9J1953502M (0008) 26 0:22 0:11
3 0x400e Body Control 971907063P (0728) 349 0:25 0:12
4 0x4010 Network Gateway 9J1907468K (0708) 463 0:05 0:04
5 0x4012 Power Steering 9J1907445K (0450) 70 0:26 0:11
6 0x4013 ABS Pump 9J1614095S (0190) 178 0:27 0:19
7 0x4014 Instrumentation|Dashboard 9J1920901AJ (0667) - - -
8 0x4015 Safety|Airbag 992959655D (3303) 419 0:23 0:12
9 0x401c Internal Engine Sound 9J1035446H (0301) 53 0:22 0:08

10 0x4023 Tailgate 8W2959107A (0335) 94 0:11 0:03
11 0x4024 Electric Spoiler 992907483T (0170) 61 0:12 0:03
12 0x403b Brake Booster 9J1907107G (0190) 60 0:32 0:11
13 0x403e Rear Driver Door 4M0959795N (0390) 60 3:18 1:15
14 0x403f Rear Passenger Door 4M0959795N (0390) 61 3:18 1:14
15 0x4042 Thermal Management 4KE965429M (0325) 280 0:12 0:04
16 0x4044 HV Battery Charger 9J1915681BT (1272) 227 0:11 0:03
17 0x4046 Air Conditioning 9J1907040L (1410) 154 0:11 0:03
18 0x404a Front Driver Door 4M0959793N (0390) 87 0:11 0:03
19 0x404b Front Passenger Door 4M0959792N (0390) 73 0:11 0:03
20 0x404c Seat Control 4M6959760 (0064) 105 0:11 0:11
21 0x404e Rear Right Radar 4N0907566AM (0588) 100 0:11 0:03
22 0x404f Driver Assist 4K4907117H (0371) 277 0:27 0:12
23 0x4053 Gear Selector 9J1713033E (0300) 35 0:11 0:03
24 0x4064 External Engine Sound 9J1035335J (0111) 53 0:22 0:08
25 0x4067 Emergency Call 4N0035282C (0450) 151 0:17 0:04
26 0x4073 Multimedia System 9J1035070BF (3882) 195 0:21 0:05
27 0x4076 Vehicle Control 9J1909101DG (0021) 389 0:26 0:12
28 0x407b Battery Control 9J1915234AS (1646) 301 0:23 0:06
29 0x407c Electric Drive Motor 9J1907121BN (0023) 67 0:32 0:08
30 0x4080 Chassis level 9J1907553R (1510) 146 0:28 0:12
31 0x4086 Online Services 9J1907018AL (1810) 170 0:13 0:04
32 0x408a Rear Left Radar 4N0907566AM (0588) 77 0:11 0:03
33 0x408b Body Control 992907064DK (0604) 473 0:15 0:11
34 0x4096 Left LED Headlight 992941572BA (9002) 69 0:11 0:06
35 0x4097 Right LED Headlight 992941572BA (9002) 69 0:11 0:06
36 0x40a5 Coupling Antenna 9J1035504B (0002) 22 0:25 0:06
37 0x40b7 DC-DC Converter 9J1959663BG (1910) 102 0:55 0:14
38 0x40c7 HV Booster 9J1915539DE (1910) 132 0:55 0:14
39 0x40f1 Safety|Airbag 992959655D (3303) 419 0:24 0:12
40 0x4767 Left LED Headlight 992941572BA (9002) 66 0:12 0:08
41 0x4768 Right LED Headlight 992941572BA (9002) 66 0:12 0:08

Total 6280 19:04 7:17
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